-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathnew_pairs.py
159 lines (142 loc) · 4.97 KB
/
new_pairs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import numpy as np
# from functions import *
from collections import defaultdict
def load_drug_target_pairs(file_path):
int_pairs = defaultdict(list)
with open(file_path, "r") as inf:
for line in inf:
data = line.strip('\n').split()
if len(data) > 1:
int_pairs[data[0]] = data[1:]
return int_pairs
def load_metador_interaction_data(file_path):
matador = defaultdict(list)
with open(file_path, "r") as inf:
inf.next()
for line in inf:
data = line.strip('\n').split('\t')
matador[data[0]].extend(data[6].split())
return matador
def load_keggid_map(database_folder):
pubMap = {}
with open(os.path.join(database_folder, "pubchem_SIDs_to_CIDs.txt"), "r") as inf:
inf.next()
for line in inf:
sid, cid = line.strip('\n').split()
pubMap[sid] = cid
drugMap = defaultdict(dict)
with open(os.path.join(database_folder, "kegg_drug_map.txt"), "r") as inf:
inf.next()
for line in inf:
k, d, c, p, ch = line.strip('\n').split('$')
if d != " ":
drugMap[k]["drugbank"] = d.split()
if c != " ":
drugMap[k]["CHEMBL"] = c.split()
if p != " ":
drugMap[k]["PubChemCID"] = [pubMap[sid] for sid in p.split() if sid in pubMap]
targetMap = defaultdict(dict)
with open(os.path.join(database_folder, "target_kegg_uniprot.txt"), "r") as inf:
inf.next()
for line in inf:
data = line.strip().split()
if len(data) > 1:
targetMap[data[0]]["uniprot"] = data[1:]
with open(os.path.join(database_folder, "target_kegg_chembl.txt"), "r") as inf:
inf.next()
for line in inf:
data = line.strip().split()
if len(data) > 1:
targetMap[data[0]]["chembl"] = data[1:]
return drugMap, targetMap
def verify_drug_target_interactions(pairs, kegg, drugbank, chembl, matador, drugMap, targetMap, output_file):
conf_pairs = []
outf = open(output_file, "w")
for num in xrange(len(pairs)):
d, t, v = pairs[num]
if d in kegg:
if t in kegg[d]:
k_value = 1
else:
k_value = 0
else:
k_value = 0
try:
x = 0
for dm in drugMap[d]["drugbank"]:
for t1 in targetMap[t]["uniprot"]:
if t1 in drugbank[dm]:
x += 1
if x > 0:
d_value = 1
else:
d_value = 0
except:
d_value = 0
try:
x = 0
for dm in drugMap[d]["CHEMBL"]:
for t1 in targetMap[t]["chembl"]:
if t1 in chembl[dm]:
x += 1
if x > 0:
c_value = 1
else:
c_value = 0
except:
c_value = 0
try:
x = 0
for dm in drugMap[d]["PubChemCID"]:
for t1 in targetMap[t]["uniprot"]:
if t1 in matador[dm]:
x += 1
if x > 0:
m_value = 1
else:
m_value = 0
except:
m_value = 0
if k_value == 1:
k_str = "K"
else:
k_str = " "
if c_value == 1:
c_str = "C"
else:
c_str = " "
if d_value == 1:
d_str = "D"
else:
d_str = " "
if m_value == 1:
m_str = "M"
else:
m_str = " "
num += 1
if k_value+d_value+c_value+m_value > 0:
conf_pairs.append((d, t, 1))
else:
conf_pairs.append((d, t, 0))
outf.write("\t\t".join([str(num), d, t, str(np.round(v, 4)), c_str, d_str, k_str, m_str])+"\n")
outf.close()
return conf_pairs
def novel_prediction_analysis(predict_pairs, output_file, database_folder, positions=[10, 30, 50, 100, 200, 500, 1000]):
drugMap, targetMap = load_keggid_map(database_folder)
kegg = load_drug_target_pairs(os.path.join(database_folder, "kegg.txt"))
drugbank = load_drug_target_pairs(os.path.join(database_folder, "drugbank.txt"))
cheml = load_drug_target_pairs(os.path.join(database_folder, "chembl.txt"))
matador = load_metador_interaction_data(os.path.join(database_folder, "matador.tsv"))
verify_pairs = verify_drug_target_interactions(predict_pairs, kegg, drugbank, cheml, matador, drugMap, targetMap, output_file)
inx = np.array(positions)
vec = np.zeros(inx.size)
num_pairs = len(verify_pairs)
for i in xrange(num_pairs):
d, t, v = verify_pairs[i]
if v > 0:
ii = ((i+1) <= inx)
vec[ii] += 1.0
for i, p in enumerate(positions):
if p <= num_pairs:
print "Top-%s novel DTIs, NO. confirmed:%s, Percentage:%.2f%%" % (p, int(vec[i]), vec[i]*100/inx[i])