-
Notifications
You must be signed in to change notification settings - Fork 3
/
attention_decoder.py
333 lines (293 loc) · 14.7 KB
/
attention_decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import tensorflow as tf
from keras import backend as K
from keras import regularizers, constraints, initializers, activations
from keras.layers.recurrent import Recurrent
from keras.engine import InputSpec
tfPrint = lambda d, T: tf.Print(input_=T, data=[T, tf.shape(T)], message=d)
def _time_distributed_dense(x, w, b=None, dropout=None,
input_dim=None, output_dim=None, timesteps=None):
'''Apply y.w + b for every temporal slice y of x.
'''
if not input_dim:
# won't work with TensorFlow
input_dim = K.shape(x)[2]
if not timesteps:
# won't work with TensorFlow
timesteps = K.shape(x)[1]
if not output_dim:
# won't work with TensorFlow
output_dim = K.shape(w)[1]
if dropout:
# apply the same dropout pattern at every timestep
ones = K.ones_like(K.reshape(x[:, 0, :], (-1, input_dim)))
dropout_matrix = K.dropout(ones, dropout)
expanded_dropout_matrix = K.repeat(dropout_matrix, timesteps)
x *= expanded_dropout_matrix
# collapse time dimension and batch dimension together
x = K.reshape(x, (-1, input_dim))
x = K.dot(x, w)
if b:
x = x + b
# reshape to 3D tensor
x = K.reshape(x, (-1, timesteps, output_dim))
return x
class AttentionDecoder(Recurrent):
def __init__(self, units, output_dim,
activation='tanh',
return_probabilities=False,
name='AttentionDecoder',
kernel_initializer='glorot_uniform',
recurrent_initializer='orthogonal',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
"""
Implements an AttentionDecoder that takes in a sequence encoded by an
encoder and outputs the decoded states
:param units: dimension of the hidden state and the attention matrices
:param output_dim: the number of labels in the output space
references:
Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio.
"Neural machine translation by jointly learning to align and translate."
arXiv preprint arXiv:1409.0473 (2014).
"""
self.units = units
self.output_dim = output_dim
self.return_probabilities = return_probabilities
self.activation = activations.get(activation)
self.kernel_initializer = initializers.get(kernel_initializer)
self.recurrent_initializer = initializers.get(recurrent_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.recurrent_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.recurrent_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
super(AttentionDecoder, self).__init__(**kwargs)
self.name = name
self.return_sequences = True # must return sequences
def build(self, input_shape):
"""
See Appendix 2 of Bahdanau 2014, arXiv:1409.0473
for model details that correspond to the matrices here.
"""
self.batch_size, self.timesteps, self.input_dim = input_shape
if self.stateful:
super(AttentionDecoder, self).reset_states()
self.states = [None, None] # y, s
"""
Matrices for creating the context vector
"""
self.V_a = self.add_weight(shape=(self.units,),
name='V_a',
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
self.W_a = self.add_weight(shape=(self.units, self.units),
name='W_a',
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
self.U_a = self.add_weight(shape=(self.input_dim, self.units),
name='U_a',
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
self.b_a = self.add_weight(shape=(self.units,),
name='b_a',
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
"""
Matrices for the r (reset) gate
"""
self.C_r = self.add_weight(shape=(self.input_dim, self.units),
name='C_r',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.U_r = self.add_weight(shape=(self.units, self.units),
name='U_r',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.W_r = self.add_weight(shape=(self.output_dim, self.units),
name='W_r',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.b_r = self.add_weight(shape=(self.units, ),
name='b_r',
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
"""
Matrices for the z (update) gate
"""
self.C_z = self.add_weight(shape=(self.input_dim, self.units),
name='C_z',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.U_z = self.add_weight(shape=(self.units, self.units),
name='U_z',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.W_z = self.add_weight(shape=(self.output_dim, self.units),
name='W_z',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.b_z = self.add_weight(shape=(self.units, ),
name='b_z',
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
"""
Matrices for the proposal
"""
self.C_p = self.add_weight(shape=(self.input_dim, self.units),
name='C_p',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.U_p = self.add_weight(shape=(self.units, self.units),
name='U_p',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.W_p = self.add_weight(shape=(self.output_dim, self.units),
name='W_p',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.b_p = self.add_weight(shape=(self.units, ),
name='b_p',
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
"""
Matrices for making the final prediction vector
"""
self.C_o = self.add_weight(shape=(self.input_dim, self.output_dim),
name='C_o',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.U_o = self.add_weight(shape=(self.units, self.output_dim),
name='U_o',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.W_o = self.add_weight(shape=(self.output_dim, self.output_dim),
name='W_o',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.b_o = self.add_weight(shape=(self.output_dim, ),
name='b_o',
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
# For creating the initial state:
self.W_s = self.add_weight(shape=(self.input_dim, self.units),
name='W_s',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.input_spec = [
InputSpec(shape=(self.batch_size, self.timesteps, self.input_dim))]
self.built = True
def call(self, x):
# store the whole sequence so we can "attend" to it at each timestep
self.x_seq = x
# apply the a dense layer over the time dimension of the sequence
# do it here because it doesn't depend on any previous steps
# thefore we can save computation time:
self._uxpb = _time_distributed_dense(self.x_seq, self.U_a, b=self.b_a,
input_dim=self.input_dim,
timesteps=self.timesteps,
output_dim=self.units)
return super(AttentionDecoder, self).call(x)
def get_initial_state(self, inputs):
# apply the matrix on the first time step to get the initial s0.
s0 = activations.tanh(K.dot(inputs[:, 0], self.W_s))
# from keras.layers.recurrent to initialize a vector of (batchsize,
# output_dim)
y0 = K.zeros_like(inputs) # (samples, timesteps, input_dims)
y0 = K.sum(y0, axis=(1, 2)) # (samples, )
y0 = K.expand_dims(y0) # (samples, 1)
y0 = K.tile(y0, [1, self.output_dim])
return [y0, s0]
def step(self, x, states):
ytm, stm = states
# repeat the hidden state to the length of the sequence
_stm = K.repeat(stm, self.timesteps)
# now multiplty the weight matrix with the repeated hidden state
_Wxstm = K.dot(_stm, self.W_a)
# calculate the attention probabilities
# this relates how much other timesteps contributed to this one.
et = K.dot(activations.tanh(_Wxstm + self._uxpb),
K.expand_dims(self.V_a))
at = K.exp(et)
at_sum = K.sum(at, axis=1)
at_sum_repeated = K.repeat(at_sum, self.timesteps)
at /= at_sum_repeated # vector of size (batchsize, timesteps, 1)
# calculate the context vector
context = K.squeeze(K.batch_dot(at, self.x_seq, axes=1), axis=1)
# ~~~> calculate new hidden state
# first calculate the "r" gate:
rt = activations.sigmoid(
K.dot(ytm, self.W_r)
+ K.dot(stm, self.U_r)
+ K.dot(context, self.C_r)
+ self.b_r)
# now calculate the "z" gate
zt = activations.sigmoid(
K.dot(ytm, self.W_z)
+ K.dot(stm, self.U_z)
+ K.dot(context, self.C_z)
+ self.b_z)
# calculate the proposal hidden state:
s_tp = activations.tanh(
K.dot(ytm, self.W_p)
+ K.dot((rt * stm), self.U_p)
+ K.dot(context, self.C_p)
+ self.b_p)
# new hidden state:
st = (1-zt)*stm + zt * s_tp
yt = activations.softmax(
K.dot(ytm, self.W_o)
+ K.dot(stm, self.U_o)
+ K.dot(context, self.C_o)
+ self.b_o)
if self.return_probabilities:
return at, [yt, st]
else:
return yt, [yt, st]
def compute_output_shape(self, input_shape):
"""
For Keras internal compatability checking
"""
if self.return_probabilities:
return (None, self.timesteps, self.timesteps)
else:
return (None, self.timesteps, self.output_dim)
def get_config(self):
"""
For rebuilding models on load time.
"""
config = {
'output_dim': self.output_dim,
'units': self.units,
'return_probabilities': self.return_probabilities
}
base_config = super(AttentionDecoder, self).get_config()
return dict(list(base_config.items()) + list(config.items()))