-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
40 lines (29 loc) · 1.29 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import os
import cv2
from bbox_class_annotation import Bounding_box_classification_annotation_tool
def main():
directory_path = "captured_images/data"
classes_path = "captured_images"
images = []
values = []
PATH_TO_MODEL = 'product_detection_weights.pt'
with open(os.path.join(classes_path, 'classes.txt')) as f:
classes = f.readlines()
for filename in os.listdir(directory_path):
f = os.path.join(directory_path, filename)
# checking if it is a file
if os.path.isfile(f) and (f.endswith('.jpg')):
images.append(f)
values.append(int(f.replace('.jpg','').replace(directory_path,'').replace('/','')))
images = [i[1] for i in sorted(zip(values, images))]
processed_images = [f for f in os.listdir('processed') if os.path.isfile(os.path.join('processed', f)) and f.endswith('.jpg')]
num = len(processed_images) # resume annotation
for i, image in enumerate(images):
if num>0:
image = images[i+num]
name = values[i+num]
new_annotation = Bounding_box_classification_annotation_tool(PATH_TO_MODEL, image, name, classes)
new_annotation.annotate()
cv2.imwrite(os.path.join('processed', str(name)+'.jpg'), cv2.imread(image))
if __name__ == '__main__':
main()