-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathHardwareSerial.cpp
686 lines (609 loc) · 18.9 KB
/
HardwareSerial.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
/*
HardwareSerial.cpp - Hardware serial library for Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 23 November 2006 by David A. Mellis
Modified 28 September 2010 by Mark Sproul
Modified 14 August 2012 by Alarus
Modified 3 December 2013 by Matthijs Kooijman
*/
#include <stdio.h>
#include "Arduino.h"
#include "HardwareSerial.h"
#if defined(HAL_UART_MODULE_ENABLED) && !defined(HAL_UART_MODULE_ONLY)
#if defined(HAVE_HWSERIAL1) || defined(HAVE_HWSERIAL2) || defined(HAVE_HWSERIAL3) ||\
defined(HAVE_HWSERIAL4) || defined(HAVE_HWSERIAL5) || defined(HAVE_HWSERIAL6) ||\
defined(HAVE_HWSERIAL7) || defined(HAVE_HWSERIAL8) || defined(HAVE_HWSERIAL9) ||\
defined(HAVE_HWSERIAL10) || defined(HAVE_HWSERIALLP1) || defined(HAVE_HWSERIALLP2) ||\
defined(HAVE_HWSERIALLP3)
// SerialEvent functions are weak, so when the user doesn't define them,
// the linker just sets their address to 0 (which is checked below).
#if defined(HAVE_HWSERIAL1)
HardwareSerial Serial1(USART1);
void serialEvent1() __attribute__((weak));
#endif
#if defined(HAVE_HWSERIAL2)
HardwareSerial Serial2(USART2);
void serialEvent2() __attribute__((weak));
#endif
#if defined(HAVE_HWSERIAL3)
HardwareSerial Serial3(USART3);
void serialEvent3() __attribute__((weak));
#endif
#if defined(HAVE_HWSERIAL4)
#if defined(USART4)
HardwareSerial Serial4(USART4);
#else
HardwareSerial Serial4(UART4);
#endif
void serialEvent4() __attribute__((weak));
#endif
#if defined(HAVE_HWSERIAL5)
#if defined(USART5)
HardwareSerial Serial5(USART5);
#else
HardwareSerial Serial5(UART5);
#endif
void serialEvent5() __attribute__((weak));
#endif
#if defined(HAVE_HWSERIAL6)
HardwareSerial Serial6(USART6);
void serialEvent6() __attribute__((weak));
#endif
#if defined(HAVE_HWSERIAL7)
#if defined(USART7)
HardwareSerial Serial7(USART7);
#else
HardwareSerial Serial7(UART7);
#endif
void serialEvent7() __attribute__((weak));
#endif
#if defined(HAVE_HWSERIAL8)
#if defined(USART8)
HardwareSerial Serial8(USART8);
#else
HardwareSerial Serial8(UART8);
#endif
void serialEvent8() __attribute__((weak));
#endif
#if defined(HAVE_HWSERIAL9)
HardwareSerial Serial9(UART9);
void serialEvent9() __attribute__((weak));
#endif
#if defined(HAVE_HWSERIAL10)
#if defined(USART10)
HardwareSerial Serial10(USART10);
#else
HardwareSerial Serial10(UART10);
#endif
void serialEvent10() __attribute__((weak));
#endif
#if defined(HAVE_HWSERIALLP1)
HardwareSerial SerialLP1(LPUART1);
void serialEventLP1() __attribute__((weak));
#endif
#if defined(HAVE_HWSERIALLP2)
HardwareSerial SerialLP2(LPUART2);
void serialEventLP2() __attribute__((weak));
#endif
#if defined(HAVE_HWSERIALLP3)
HardwareSerial SerialLP2(LPUART3);
void serialEventLP3() __attribute__((weak));
#endif
#endif // HAVE_HWSERIALx
// Constructors ////////////////////////////////////////////////////////////////
HardwareSerial::HardwareSerial(uint32_t _rx, uint32_t _tx, uint32_t _rts, uint32_t _cts)
{
init(digitalPinToPinName(_rx), digitalPinToPinName(_tx), digitalPinToPinName(_rts), digitalPinToPinName(_cts));
}
HardwareSerial::HardwareSerial(PinName _rx, PinName _tx, PinName _rts, PinName _cts)
{
init(_rx, _tx, _rts, _cts);
}
HardwareSerial::HardwareSerial(void *peripheral, HalfDuplexMode_t halfDuplex)
{
// If PIN_SERIALy_RX is not defined assume half-duplex
_serial.pin_rx = NC;
// If Serial is defined in variant set
// the Rx/Tx pins for com port if defined
#if defined(Serial) && defined(PIN_SERIAL_TX)
#if !defined(USBCON) || defined(USBD_USE_CDC) && defined(DISABLE_GENERIC_SERIALUSB)
if ((void *)this == (void *)&Serial) {
#if defined(PIN_SERIAL_RX)
setRx(PIN_SERIAL_RX);
#endif
setTx(PIN_SERIAL_TX);
} else
#endif
#endif
#if defined(PIN_SERIAL1_TX) && defined(USART1_BASE)
if (peripheral == USART1) {
#if defined(PIN_SERIAL1_RX)
setRx(PIN_SERIAL1_RX);
#endif
setTx(PIN_SERIAL1_TX);
} else
#endif
#if defined(PIN_SERIAL2_TX) && defined(USART2_BASE)
if (peripheral == USART2) {
#if defined(PIN_SERIAL2_RX)
setRx(PIN_SERIAL2_RX);
#endif
setTx(PIN_SERIAL2_TX);
} else
#endif
#if defined(PIN_SERIAL3_TX) && defined(USART3_BASE)
if (peripheral == USART3) {
#if defined(PIN_SERIAL3_RX)
setRx(PIN_SERIAL3_RX);
#endif
setTx(PIN_SERIAL3_TX);
} else
#endif
#if defined(PIN_SERIAL4_TX) &&\
(defined(USART4_BASE) || defined(UART4_BASE))
#if defined(USART4_BASE)
if (peripheral == USART4)
#elif defined(UART4_BASE)
if (peripheral == UART4)
#endif
{
#if defined(PIN_SERIAL4_RX)
setRx(PIN_SERIAL4_RX);
#endif
setTx(PIN_SERIAL4_TX);
} else
#endif
#if defined(PIN_SERIAL5_TX) &&\
(defined(USART5_BASE) || defined(UART5_BASE))
#if defined(USART5_BASE)
if (peripheral == USART5)
#elif defined(UART5_BASE)
if (peripheral == UART5)
#endif
{
#if defined(PIN_SERIAL5_RX)
setRx(PIN_SERIAL5_RX);
#endif
setTx(PIN_SERIAL5_TX);
} else
#endif
#if defined(PIN_SERIAL6_TX) && defined(USART6_BASE)
if (peripheral == USART6) {
#if defined(PIN_SERIAL6_RX)
setRx(PIN_SERIAL6_RX);
#endif
setTx(PIN_SERIAL6_TX);
} else
#endif
#if defined(PIN_SERIAL7_TX) &&\
(defined(USART7_BASE) || defined(UART7_BASE))
#if defined(USART7_BASE)
if (peripheral == USART7)
#elif defined(UART7_BASE)
if (peripheral == UART7)
#endif
{
#if defined(PIN_SERIAL7_RX)
setRx(PIN_SERIAL7_RX);
#endif
setTx(PIN_SERIAL7_TX);
} else
#endif
#if defined(PIN_SERIAL8_TX) &&\
(defined(USART8_BASE) || defined(UART8_BASE))
#if defined(USART8_BASE)
if (peripheral == USART8)
#elif defined(UART8_BASE)
if (peripheral == UART8)
#endif
{
#if defined(PIN_SERIAL8_RX)
setRx(PIN_SERIAL8_RX);
#endif
setTx(PIN_SERIAL8_TX);
} else
#endif
#if defined(PIN_SERIAL9_TX) && defined(UART9_BASE)
if (peripheral == UART9) {
#if defined(PIN_SERIAL9_RX)
setRx(PIN_SERIAL9_RX);
#endif
setTx(PIN_SERIAL9_TX);
} else
#endif
#if defined(PIN_SERIAL10_TX) &&\
(defined(USART10_BASE) || defined(UART10_BASE))
#if defined(USART10_BASE)
if (peripheral == USART10)
#elif defined(UART10_BASE)
if (peripheral == UART10)
#endif
{
#if defined(PIN_SERIAL10_RX)
setRx(PIN_SERIAL10_RX);
#endif
setTx(PIN_SERIAL10_TX);
} else
#endif
#if defined(PIN_SERIALLP1_TX) && defined(LPUART1_BASE)
if (peripheral == LPUART1) {
#if defined(PIN_SERIALLP1_RX)
setRx(PIN_SERIALLP1_RX);
#endif
setTx(PIN_SERIALLP1_TX);
} else
#endif
#if defined(PIN_SERIALLP2_TX) && defined(LPUART2_BASE)
if (peripheral == LPUART2) {
#if defined(PIN_SERIALLP2_RX)
setRx(PIN_SERIALLP2_RX);
#endif
setTx(PIN_SERIALLP2_TX);
} else
#endif
#if defined(PIN_SERIALLP3_TX) && defined(LPUART3_BASE)
if (peripheral == LPUART3) {
#if defined(PIN_SERIALLP3_RX)
setRx(PIN_SERIALLP3_RX);
#endif
setTx(PIN_SERIALLP3_TX);
} else
#endif
#if defined(PIN_SERIAL_TX)
// If PIN_SERIAL_TX is defined but Serial is mapped on other peripheral
// (usually SerialUSB) use the pins defined for specified peripheral
// instead of the first one found
if ((pinmap_peripheral(digitalPinToPinName(PIN_SERIAL_TX), PinMap_UART_TX) == peripheral)) {
#if defined(PIN_SERIAL_RX)
setRx(PIN_SERIAL_RX);
#endif
setTx(PIN_SERIAL_TX);
} else
#endif
{
// else get the pins of the first peripheral occurrence in PinMap
_serial.pin_rx = pinmap_pin(peripheral, PinMap_UART_RX);
_serial.pin_tx = pinmap_pin(peripheral, PinMap_UART_TX);
}
if (halfDuplex == HALF_DUPLEX_ENABLED) {
_serial.pin_rx = NC;
}
init(_serial.pin_rx, _serial.pin_tx);
}
HardwareSerial::HardwareSerial(uint32_t _rxtx)
{
init(NC, digitalPinToPinName(_rxtx));
}
HardwareSerial::HardwareSerial(PinName _rxtx)
{
init(NC, _rxtx);
}
void HardwareSerial::init(PinName _rx, PinName _tx, PinName _rts, PinName _cts)
{
if (_rx == _tx) {
_serial.pin_rx = NC;
} else {
_serial.pin_rx = _rx;
}
_serial.pin_tx = _tx;
_serial.pin_rts = _rts;
_serial.pin_cts = _cts;
_serial.rx_buff = _rx_buffer;
_serial.rx_head = 0;
_serial.rx_tail = 0;
_serial.tx_buff = _tx_buffer;
_serial.tx_head = 0;
_serial.tx_tail = 0;
}
void HardwareSerial::configForLowPower(void)
{
#if defined(HAL_PWR_MODULE_ENABLED) && (defined(UART_IT_WUF) || defined(LPUART1_BASE))
// Reconfigure properly Serial instance to use HSI as clock source
end();
uart_config_lowpower(&_serial);
begin(_baud, _config);
#endif
}
// Actual interrupt handlers //////////////////////////////////////////////////////////////
void HardwareSerial::_rx_complete_irq(serial_t *obj)
{
// No Parity error, read byte and store it in the buffer if there is room
unsigned char c;
if (uart_getc(obj, &c) == 0) {
rx_buffer_index_t i = (unsigned int)(obj->rx_head + 1) % SERIAL_RX_BUFFER_SIZE;
// if we should be storing the received character into the location
// just before the tail (meaning that the head would advance to the
// current location of the tail), we're about to overflow the buffer
// and so we don't write the character or advance the head.
if (i != obj->rx_tail) {
obj->rx_buff[obj->rx_head] = c;
obj->rx_head = i;
}
}
}
// Actual interrupt handlers //////////////////////////////////////////////////
int HardwareSerial::_tx_complete_irq(serial_t *obj)
{
size_t remaining_data;
// previous HAL transfer is finished, move tail pointer accordingly
obj->tx_tail = (obj->tx_tail + obj->tx_size) % SERIAL_TX_BUFFER_SIZE;
// If buffer is not empty (head != tail), send remaining data
if (obj->tx_head != obj->tx_tail) {
remaining_data = (SERIAL_TX_BUFFER_SIZE + obj->tx_head - obj->tx_tail)
% SERIAL_TX_BUFFER_SIZE;
// Limit the next transmission to the buffer end
// because HAL is not able to manage rollover
obj->tx_size = min(remaining_data,
(size_t)(SERIAL_TX_BUFFER_SIZE - obj->tx_tail));
uart_attach_tx_callback(obj, _tx_complete_irq, obj->tx_size);
return -1;
}
return 0;
}
// Public Methods //////////////////////////////////////////////////////////////
void HardwareSerial::begin(unsigned long baud, byte config)
{
uint32_t databits = 0;
uint32_t stopbits = 0;
uint32_t parity = 0;
_baud = baud;
_config = config;
// Manage databits
switch (config & 0x07) {
case 0x02:
databits = 6;
break;
case 0x04:
databits = 7;
break;
case 0x06:
databits = 8;
break;
default:
databits = 0;
break;
}
if ((config & 0x30) == 0x30) {
parity = UART_PARITY_ODD;
databits++;
} else if ((config & 0x20) == 0x20) {
parity = UART_PARITY_EVEN;
databits++;
} else {
parity = UART_PARITY_NONE;
}
if ((config & 0x08) == 0x08) {
stopbits = UART_STOPBITS_2;
} else {
stopbits = UART_STOPBITS_1;
}
switch (databits) {
#ifdef UART_WORDLENGTH_7B
case 7:
databits = UART_WORDLENGTH_7B;
break;
#endif
case 8:
databits = UART_WORDLENGTH_8B;
break;
case 9:
databits = UART_WORDLENGTH_9B;
break;
default:
case 0:
Error_Handler();
break;
}
uart_init(&_serial, (uint32_t)baud, databits, parity, stopbits, _rx_invert, _tx_invert, _data_invert);
enableHalfDuplexRx();
uart_attach_rx_callback(&_serial, _rx_complete_irq);
}
void HardwareSerial::end()
{
// wait for transmission of outgoing data
flush(TX_TIMEOUT);
uart_deinit(&_serial);
// clear any received data
_serial.rx_head = _serial.rx_tail;
}
int HardwareSerial::available(void)
{
return ((unsigned int)(SERIAL_RX_BUFFER_SIZE + _serial.rx_head - _serial.rx_tail)) % SERIAL_RX_BUFFER_SIZE;
}
int HardwareSerial::peek(void)
{
if (_serial.rx_head == _serial.rx_tail) {
return -1;
} else {
return _serial.rx_buff[_serial.rx_tail];
}
}
int HardwareSerial::read(void)
{
enableHalfDuplexRx();
// if the head isn't ahead of the tail, we don't have any characters
if (_serial.rx_head == _serial.rx_tail) {
return -1;
} else {
unsigned char c = _serial.rx_buff[_serial.rx_tail];
_serial.rx_tail = (rx_buffer_index_t)(_serial.rx_tail + 1) % SERIAL_RX_BUFFER_SIZE;
return c;
}
}
int HardwareSerial::availableForWrite(void)
{
tx_buffer_index_t head = _serial.tx_head;
tx_buffer_index_t tail = _serial.tx_tail;
if (head >= tail) {
return SERIAL_TX_BUFFER_SIZE - 1 - head + tail;
}
return tail - head - 1;
}
void HardwareSerial::flush()
{
flush(0);
}
void HardwareSerial::flush(uint32_t timeout)
{
// If we have never written a byte, no need to flush. This special
// case is needed since there is no way to force the TXC (transmit
// complete) bit to 1 during initialization
if (_written) {
uint32_t tickstart = HAL_GetTick();
while ((_serial.tx_head != _serial.tx_tail)) {
// the interrupt handler will free up space for us
// Only manage timeout if any
if ((timeout != 0) && ((HAL_GetTick() - tickstart) >= timeout)) {
// clear any transmit data
_serial.tx_head = _serial.tx_tail;
break;
}
}
// If we get here, nothing is queued anymore (DRIE is disabled) and
// the hardware finished transmission (TXC is set).
}
}
size_t HardwareSerial::write(const uint8_t *buffer, size_t size)
{
size_t size_intermediate;
size_t ret = size;
size_t available = availableForWrite();
size_t available_till_buffer_end = SERIAL_TX_BUFFER_SIZE - _serial.tx_head;
_written = true;
if (isHalfDuplex()) {
if (_rx_enabled) {
_rx_enabled = false;
uart_enable_tx(&_serial);
}
}
// If the output buffer is full, there's nothing for it other than to
// wait for the interrupt handler to free space
while (!availableForWrite()) {
// nop, the interrupt handler will free up space for us
}
// HAL doesn't manage rollover, so split transfer till end of TX buffer
// Also, split transfer according to available space in buffer
while ((size > available_till_buffer_end) || (size > available)) {
size_intermediate = min(available, available_till_buffer_end);
write(buffer, size_intermediate);
size -= size_intermediate;
buffer += size_intermediate;
available = availableForWrite();
available_till_buffer_end = SERIAL_TX_BUFFER_SIZE - _serial.tx_head;
}
// Copy data to buffer. Take into account rollover if necessary.
if (_serial.tx_head + size <= SERIAL_TX_BUFFER_SIZE) {
memcpy(&_serial.tx_buff[_serial.tx_head], buffer, size);
size_intermediate = size;
} else {
// memcpy till end of buffer then continue memcpy from beginning of buffer
size_intermediate = SERIAL_TX_BUFFER_SIZE - _serial.tx_head;
memcpy(&_serial.tx_buff[_serial.tx_head], buffer, size_intermediate);
memcpy(&_serial.tx_buff[0], buffer + size_intermediate,
size - size_intermediate);
}
// Data are copied to buffer, move head pointer accordingly
_serial.tx_head = (_serial.tx_head + size) % SERIAL_TX_BUFFER_SIZE;
// Transfer data with HAL only is there is no TX data transfer ongoing
// otherwise, data transfer will be done asynchronously from callback
if (!serial_tx_active(&_serial)) {
// note: tx_size correspond to size of HAL data transfer,
// not the total amount of data in the buffer.
// To compute size of data in buffer compare head and tail
_serial.tx_size = size_intermediate;
uart_attach_tx_callback(&_serial, _tx_complete_irq, size_intermediate);
}
/* There is no real error management so just return transfer size requested*/
return ret;
}
size_t HardwareSerial::write(uint8_t c)
{
uint8_t buff = c;
return write(&buff, 1);
}
void HardwareSerial::setRx(uint32_t _rx)
{
_serial.pin_rx = digitalPinToPinName(_rx);
}
void HardwareSerial::setTx(uint32_t _tx)
{
_serial.pin_tx = digitalPinToPinName(_tx);
}
void HardwareSerial::setRx(PinName _rx)
{
_serial.pin_rx = _rx;
}
void HardwareSerial::setTx(PinName _tx)
{
_serial.pin_tx = _tx;
}
void HardwareSerial::setRts(uint32_t _rts)
{
_serial.pin_rts = digitalPinToPinName(_rts);
}
void HardwareSerial::setCts(uint32_t _cts)
{
_serial.pin_cts = digitalPinToPinName(_cts);
}
void HardwareSerial::setRtsCts(uint32_t _rts, uint32_t _cts)
{
_serial.pin_rts = digitalPinToPinName(_rts);
_serial.pin_cts = digitalPinToPinName(_cts);
}
void HardwareSerial::setRts(PinName _rts)
{
_serial.pin_rts = _rts;
}
void HardwareSerial::setCts(PinName _cts)
{
_serial.pin_cts = _cts;
}
void HardwareSerial::setRtsCts(PinName _rts, PinName _cts)
{
_serial.pin_rts = _rts;
_serial.pin_cts = _cts;
}
void HardwareSerial::setHalfDuplex(void)
{
_serial.pin_rx = NC;
}
bool HardwareSerial::isHalfDuplex(void) const
{
return _serial.pin_rx == NC;
}
void HardwareSerial::enableHalfDuplexRx(void)
{
if (isHalfDuplex()) {
// In half-duplex mode we have to wait for all TX characters to
// be transmitted before we can receive data.
flush();
if (!_rx_enabled) {
_rx_enabled = true;
uart_enable_rx(&_serial);
}
}
}
void HardwareSerial::setRxInvert(void)
{
_rx_invert = true;
}
void HardwareSerial::setTxInvert(void)
{
_tx_invert = true;
}
void HardwareSerial::setDataInvert(void)
{
_data_invert = true;
}
#endif // HAL_UART_MODULE_ENABLED && !HAL_UART_MODULE_ONLY