forked from leehomyc/cyclegan-1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_cyclegan_dataset.py
76 lines (63 loc) · 2.39 KB
/
create_cyclegan_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"""Create datasets for training and testing."""
import csv
import os
import random
import click
from . import cyclegan_datasets
def create_list(foldername, fulldir=True, suffix=".jpg"):
"""
:param foldername: The full path of the folder.
:param fulldir: Whether to return the full path or not.
:param suffix: Filter by suffix.
:return: The list of filenames in the folder with given suffix.
"""
file_list_tmp = os.listdir(foldername)
file_list = []
if fulldir:
for item in file_list_tmp:
if item.endswith(suffix):
file_list.append(os.path.join(foldername, item))
else:
for item in file_list_tmp:
if item.endswith(suffix):
file_list.append(item)
return file_list
@click.command()
@click.option('--image_path_a',
type=click.STRING,
default='./input/horse2zebra/trainA',
help='The path to the images from domain_a.')
@click.option('--image_path_b',
type=click.STRING,
default='./input/horse2zebra/trainB',
help='The path to the images from domain_b.')
@click.option('--dataset_name',
type=click.STRING,
default='horse2zebra_train',
help='The name of the dataset in cyclegan_dataset.')
@click.option('--do_shuffle',
type=click.BOOL,
default=False,
help='Whether to shuffle images when creating the dataset.')
def create_dataset(image_path_a, image_path_b,
dataset_name, do_shuffle):
list_a = create_list(image_path_a, True,
cyclegan_datasets.DATASET_TO_IMAGETYPE[dataset_name])
list_b = create_list(image_path_b, True,
cyclegan_datasets.DATASET_TO_IMAGETYPE[dataset_name])
output_path = cyclegan_datasets.PATH_TO_CSV[dataset_name]
num_rows = cyclegan_datasets.DATASET_TO_SIZES[dataset_name]
all_data_tuples = []
for i in range(num_rows):
all_data_tuples.append((
list_a[i % len(list_a)],
list_b[i % len(list_b)]
))
if do_shuffle is True:
random.shuffle(all_data_tuples)
with open(output_path, 'w') as csv_file:
csv_writer = csv.writer(csv_file)
for data_tuple in enumerate(all_data_tuples):
csv_writer.writerow(list(data_tuple[1]))
if __name__ == '__main__':
create_dataset()