-
Notifications
You must be signed in to change notification settings - Fork 1
/
crypto.go
308 lines (251 loc) · 8.66 KB
/
crypto.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
// Copyright 2021 dfuse Platform Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package eth
import (
"crypto/elliptic"
"encoding/hex"
"encoding/json"
"fmt"
"hash"
"math/big"
"strconv"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/btcsuite/btcd/btcec/v2/ecdsa"
"github.com/decred/dcrd/dcrec/secp256k1/v4"
"golang.org/x/crypto/sha3"
)
// KeyBag holds private keys in memory, for signing transactions.
type KeyBag struct {
Keys []*PrivateKey `json:"keys"`
}
func NewKeyBag() *KeyBag {
return &KeyBag{
Keys: make([]*PrivateKey, 0),
}
}
type PublicKey struct {
inner *secp256k1.PublicKey
}
func NewPublicKeyFromECDSA(key *secp256k1.PublicKey) *PublicKey {
return &PublicKey{inner: key}
}
func (p PublicKey) Address() Address {
return pubkeyToAddress(p.inner)
}
type PrivateKey struct {
inner *secp256k1.PrivateKey
}
func NewRandomPrivateKey() (*PrivateKey, error) {
privateKey, err := secp256k1.GeneratePrivateKey()
if err != nil {
return nil, err
}
return &PrivateKey{inner: privateKey}, nil
}
func NewPrivateKey(rawPrivateKey string) (*PrivateKey, error) {
keyBytes, err := hex.DecodeString(rawPrivateKey)
if err != nil {
return nil, fmt.Errorf("invalid key: %w", err)
}
return privateKeyFromRawBytes(keyBytes)
}
func privateKeyFromRawBytes(privateKeyBytes []byte) (*PrivateKey, error) {
if len(privateKeyBytes) != btcec.PrivKeyBytesLen {
return nil, fmt.Errorf("not enough bytes, got %d bytes but secp256k1 private key must have %d bytes",
len(privateKeyBytes), btcec.PrivKeyBytesLen)
}
privKey, _ := btcec.PrivKeyFromBytes(privateKeyBytes)
return &PrivateKey{inner: (*secp256k1.PrivateKey)(privKey)}, nil
}
func (p *PrivateKey) String() string {
return hex.EncodeToString(p.Bytes())
}
func (p *PrivateKey) Bytes() (out []byte) {
return p.inner.Serialize()
}
// Sign generates the signature for the according message hash based on this private key
// using ECDSA signature rules.
//
// See Signature documentation for more info about return signature format.
func (p *PrivateKey) Sign(messageHash Hash) (out Signature, err error) {
compressedSignature, err := ecdsa.SignCompact(p.inner, messageHash, false)
if err != nil {
return out, fmt.Errorf("ecdsa sign compact: %w", err)
}
copy(out[:], compressedSignature)
return out, nil
}
var messagePrefix = []byte("\x19Ethereum Signed Message:\n")
// SignPersonal computes the correct message from `signingData` according to [ERC-712](https://eips.ethereum.org/EIPS/eip-712)
// which is briefly `keccak256(bytesOf("\x19Ethereum Signed Message:\n") + bytesOf(toString(len(signingData))) + signingData)`.
//
// This computed generated hash is then pass directly to `privateKey.Sign(personalMessageHash)`.
//
// See Sign for more details.
func (p *PrivateKey) SignPersonal(signingData Hex) (out Signature, err error) {
return p.Sign(computePersonalMessageHash(signingData))
}
func computePersonalMessageHash(signingData Hex) Hash {
lengthString := strconv.FormatUint(uint64(len(signingData)), 10)
data := make([]byte, len(messagePrefix)+len(lengthString)+len(signingData))
copy(data, messagePrefix)
copy(data[len(messagePrefix):], []byte(lengthString))
copy(data[len(messagePrefix)+len(lengthString):], signingData)
return Keccak256(data)
}
func (p *PrivateKey) MarshalJSON() ([]byte, error) {
// The `p.String()` is guaranteed to returns only hex characters, so it's safe to wrap directly with `"` symbols
return []byte(`"` + p.String() + `"`), nil
}
func (p *PrivateKey) UnmarshalJSON(v []byte) (err error) {
var s string
if err := json.Unmarshal(v, &s); err != nil {
return err
}
newPrivKey, err := NewPrivateKey(s)
if err != nil {
return fmt.Errorf("invalid private key: %w", err)
}
*p = *newPrivKey
return
}
func (p *PrivateKey) PublicKey() *PublicKey {
return &PublicKey{inner: p.inner.PubKey()}
}
// Signature represents a btcec Signature as computed from ecdsa.SignCompact(), this signature
// is in packed form of 65 bytes with ordered V (1 byte) + R (32 bytes) + S (32 bytes).
//
// The components can be retrieved with `R()`, `S()` and `V()`.
type Signature [65]byte
func NewSignatureFromBytes(in []byte) (out Signature, err error) {
if len(in) != 65 {
return out, fmt.Errorf("expected signature to have 65 bytes but input has %d byte(s)", len(in))
}
copy(out[:], in[0:65])
return
}
// ToInverted returns the InvertedSignature version of this Signature, this is
// that the components are ordered as `R`, `S` then `V` in the inverted version.
//
// This form is used on certain Ethereum construct like when doing a personal signing
// where the `V` component must be the last component of the signature for correct
// recovery.
func (s Signature) ToInverted() (out InvertedSignature) {
copy(out[:], s[1:65])
out[64] = s[0]
return
}
func (s Signature) R() *big.Int {
return new(big.Int).SetBytes(s[1:33])
}
func (s Signature) S() *big.Int {
return new(big.Int).SetBytes(s[33:])
}
// V returns the recovery ID according to Bitcoin rules for the signature recovery.
// Ethereum augmented recovery ID to protect agaisnt replay attacks is **not**
// applied here.
//
//
// See https://bitcoin.stackexchange.com/a/38909 for extra details
func (s Signature) V() byte {
return byte(s[0])
}
func (s Signature) Recover(messageHash Hash) (Address, error) {
publicKey, compressed, err := ecdsa.RecoverCompact(s[:], messageHash)
if err != nil {
return nil, fmt.Errorf("ecdsa recover compact: %w", err)
}
// Original key was compressed, is it possible in our usage? For now, just ignore it
_ = compressed
return NewPublicKeyFromECDSA(publicKey).Address(), nil
}
func (s Signature) RecoverPersonal(signingData Hex) (Address, error) {
return s.Recover(computePersonalMessageHash(signingData))
}
func (s Signature) String() string {
return hex.EncodeToString(s[:])
}
// InvertedSignature represents a standard Signature but the order of component
// `V` is inverted, being the last byte of the bytes (where it's the first byte in the
// standard `btcec` Signature).
//
//
// The InverteSignature is in packed form of 65 bytes and order of the components is
// R (32 bytes) + S (32 bytes) + V (1 byte).
//
// The components can be retrieved with `R()`, `S()` and `V()`.
//
// This form is used on certain Ethereum construct like when doing a personal signing
// where the `V` component must be the last component of the signature for correct
// recovery.
type InvertedSignature [65]byte
func NewInvertedSignatureFromBytes(in []byte) (out InvertedSignature, err error) {
if len(in) != 65 {
return out, fmt.Errorf("expected inverted signature to have 65 bytes but input has %d byte(s)", len(in))
}
copy(out[:], in[0:65])
return
}
func (s InvertedSignature) ToSignature() (out Signature) {
out[0] = s[64]
copy(out[1:], s[0:64])
return
}
// R returns the R component of signature.
func (s InvertedSignature) R() *big.Int {
return new(big.Int).SetBytes(s[0:32])
}
// S returns the R component of signature.
func (s InvertedSignature) S() *big.Int {
return new(big.Int).SetBytes(s[32:64])
}
// V returns the recovery ID according to Bitcoin rules for the signature recovery.
// Ethereum augmented recovery ID to protect agaisnt replay attacks is **not**
// applied here.
//
// See https://bitcoin.stackexchange.com/a/38909 for extra details
func (s InvertedSignature) V() byte {
return byte(s[64])
}
// RecoverPersonal is a shortcut method for `signature.ToSignature().Recover(messageHash)`.
func (s InvertedSignature) Recover(messageHash Hash) (Address, error) {
return s.ToSignature().Recover(messageHash)
}
// RecoverPersonal is a shortcut method for `signature.ToSignature().RecoverPersonal(signingData)`.
func (s InvertedSignature) RecoverPersonal(signingData Hex) (Address, error) {
return s.ToSignature().RecoverPersonal(signingData)
}
func (s InvertedSignature) String() string {
return hex.EncodeToString(s[:])
}
type keccakState interface {
hash.Hash
Read([]byte) (int, error)
}
func Keccak256(data ...[]byte) []byte {
b := make([]byte, 32)
d := sha3.NewLegacyKeccak256().(keccakState)
for _, b := range data {
d.Write(b)
}
d.Read(b)
return b
}
func pubkeyToAddress(p *secp256k1.PublicKey) Address {
if p == nil {
return nil
}
pubBytes := elliptic.Marshal(btcec.S256(), p.X(), p.Y())
return Address(Keccak256(pubBytes[1:])[12:])
}