-
Notifications
You must be signed in to change notification settings - Fork 3
/
risugen_arm.pm
959 lines (844 loc) · 27.8 KB
/
risugen_arm.pm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
#!/usr/bin/perl -w
###############################################################################
# Copyright (c) 2010 Linaro Limited
# All rights reserved. This program and the accompanying materials
# are made available under the terms of the Eclipse Public License v1.0
# which accompanies this distribution, and is available at
# http://www.eclipse.org/legal/epl-v10.html
#
# Contributors:
# Peter Maydell (Linaro) - initial implementation
# Claudio Fontana (Linaro) - initial aarch64 support
# Jose Ricardo Ziviani (IBM) - modularize risugen
###############################################################################
# risugen -- generate a test binary file for use with risu
# See 'risugen --help' for usage information.
package risugen_arm;
use strict;
use warnings;
use risugen_common;
require Exporter;
our @ISA = qw(Exporter);
our @EXPORT = qw(write_test_code);
my $periodic_reg_random = 1;
my $enable_aarch64_ld1 = 0;
# Note that we always start in ARM mode even if the C code was compiled for
# thumb because we are called by branch to a lsbit-clear pointer.
# is_thumb tracks the mode we're actually currently in (ie should we emit
# an arm or thumb insn?); test_thumb tells us which mode we need to switch
# to to emit the insns under test.
# Use .mode aarch64 to start in Aarch64 mode.
my $is_aarch64 = 0; # are we in aarch64 mode?
# For aarch64 it only makes sense to put the mode directive at the
# beginning, and there is no switching away from aarch64 to arm/thumb.
my $is_thumb = 0; # are we currently in Thumb mode?
my $test_thumb = 0; # should test code be Thumb mode?
# Maximum alignment restriction permitted for a memory op.
my $MAXALIGN = 64;
# An instruction pattern as parsed from the config file turns into
# a record like this:
# name # name of the pattern
# width # 16 or 32
# fixedbits # values of the fixed bits
# fixedbitmask # 1s indicate locations of the fixed bits
# blocks # hash of blockname->contents (for constraints etc)
# fields # array of arrays, each element is [ varname, bitpos, bitmask ]
#
# We store these in the insn_details hash.
# Valid block names (keys in blocks hash)
my %valid_blockname = ( constraints => 1, memory => 1 );
# for thumb only
sub thumb_align4()
{
if ($bytecount & 3) {
insn16(0xbf00); # NOP
}
}
# used for aarch64 only for now
sub data_barrier()
{
if ($is_aarch64) {
insn32(0xd5033f9f); # DSB SYS
}
}
# The space 0xE7F___F_ is guaranteed to always UNDEF
# and not to be allocated for insns in future architecture
# revisions. So we use it for our 'do comparison' and
# 'end of test' instructions.
# We fill in the middle bit with a randomly selected
# 'e5a' just in case the space is being used by somebody
# else too.
# For Thumb the equivalent space is 0xDExx
# and we use 0xDEEx.
# So the last nibble indicates the desired operation:
my $OP_COMPARE = 0; # compare registers
my $OP_TESTEND = 1; # end of test, stop
my $OP_SETMEMBLOCK = 2; # r0 is address of memory block (8192 bytes)
my $OP_GETMEMBLOCK = 3; # add the address of memory block to r0
my $OP_COMPAREMEM = 4; # compare memory block
sub write_thumb_risuop($)
{
my ($op) = @_;
insn16(0xdee0 | $op);
}
sub write_arm_risuop($)
{
my ($op) = @_;
insn32(0xe7fe5af0 | $op);
}
sub write_aarch64_risuop($)
{
# instr with bits (28:27) == 0 0 are UNALLOCATED
my ($op) = @_;
insn32(0x00005af0 | $op);
}
sub write_risuop($)
{
my ($op) = @_;
if ($is_thumb) {
write_thumb_risuop($op);
} elsif ($is_aarch64) {
write_aarch64_risuop($op);
} else {
write_arm_risuop($op);
}
}
sub write_switch_to_thumb()
{
# Switch to thumb if we're not already there
if (!$is_thumb) {
# Note that we have to clean up r0 afterwards
# so it isn't tainted with a value which depends
# on PC (and which might differ between hw and
# qemu/valgrind/etc)
insn32(0xe28f0001); # add r0, pc, #1
insn32(0xe12fff10); # bx r0
insn16(0x4040); # eor r0,r0 (enc T1)
$is_thumb = 1;
}
}
sub write_switch_to_arm()
{
# Switch to ARM mode if we are in thumb mode
if ($is_thumb) {
thumb_align4();
insn16(0x4778); # bx pc
insn16(0xbf00); # nop
$is_thumb = 0;
}
}
sub write_switch_to_test_mode()
{
# Switch to whichever mode we need for test code
if ($is_aarch64) {
return; # nothing to do
}
if ($test_thumb) {
write_switch_to_thumb();
} else {
write_switch_to_arm();
}
}
# sign extend a 32bit reg into a 64bit reg
sub write_sxt32($$)
{
my ($rd, $rn) = @_;
die "write_sxt32: invalid operation for this arch.\n" if (!$is_aarch64);
insn32(0x93407c00 | $rn << 5 | $rd);
}
sub write_sub_rrr($$$)
{
my ($rd, $rn, $rm) = @_;
if ($is_aarch64) {
insn32(0xcb000000 | ($rm << 16) | ($rn << 5) | $rd);
} elsif ($is_thumb) {
# enc T2
insn16(0xeba0 | $rn);
insn16(0x0000 | ($rd << 8) | $rm);
} else {
# enc A1
insn32(0xe0400000 | ($rn << 16) | ($rd << 12) | $rm);
}
}
# valid shift types
my $SHIFT_LSL = 0;
my $SHIFT_LSR = 1;
my $SHIFT_ASR = 2;
my $SHIFT_ROR = 3;
sub write_sub_rrrs($$$$$)
{
# sub rd, rn, rm, shifted
my ($rd, $rn, $rm, $type, $imm) = @_;
$type = $SHIFT_LSL if $imm == 0;
my $bits = $is_aarch64 ? 64 : 32;
if ($imm == $bits && ($type == $SHIFT_LSR || $type == $SHIFT_ASR)) {
$imm = 0;
}
die "write_sub_rrrs: bad shift immediate $imm\n" if $imm < 0 || $imm > ($bits - 1);
if ($is_aarch64) {
insn32(0xcb000000 | ($type << 22) | ($rm << 16) | ($imm << 10) | ($rn << 5) | $rd);
} elsif ($is_thumb) {
# enc T2
my ($imm3, $imm2) = ($imm >> 2, $imm & 3);
insn16(0xeba0 | $rn);
insn16(($imm3 << 12) | ($rd << 8) | ($imm2 << 6) | ($type << 4) | $rm);
} else {
# enc A1
insn32(0xe0400000 | ($rn << 16) | ($rd << 12) | ($imm << 7) | ($type << 5) | $rm);
}
}
sub write_mov_rr($$)
{
my ($rd, $rm) = @_;
if ($is_aarch64) {
# using ADD 0x11000000 */
insn32(0x91000000 | ($rm << 5) | $rd);
} elsif ($is_thumb) {
# enc T3
insn16(0xea4f);
insn16(($rd << 8) | $rm);
} else {
# enc A1
insn32(0xe1a00000 | ($rd << 12) | $rm);
}
}
sub write_mov_ri16($$$)
{
# Write 16 bits of immediate to register, using either MOVW or MOVT
my ($rd, $imm, $is_movt) = @_;
die "write_mov_ri16: immediate $imm out of range\n" if (($imm & 0xffff0000) != 0);
if ($is_aarch64) {
# Use MOVZ 0x52800000. is_movt means MOVK of high bits */
insn32(0xd2800000 | ($is_movt << 29) | ($is_movt ? 16 << 17 : 0) | ($imm << 5) | $rd);
} elsif ($is_thumb) {
# enc T3
my ($imm4, $i, $imm3, $imm8) = (($imm & 0xf000) >> 12,
($imm & 0x0800) >> 11,
($imm & 0x0700) >> 8,
($imm & 0x00ff));
insn16(0xf240 | ($is_movt << 7) | ($i << 10) | $imm4);
insn16(($imm3 << 12) | ($rd << 8) | $imm8);
} else {
# enc A2
my ($imm4, $imm12) = (($imm & 0xf000) >> 12,
($imm & 0x0fff));
insn32(0xe3000000 | ($is_movt << 22) | ($imm4 << 16) | ($rd << 12) | $imm12);
}
}
sub write_mov_ri($$)
{
# We always use a MOVW/MOVT pair, for simplicity.
# on aarch64, we use a MOVZ/MOVK pair.
my ($rd, $imm) = @_;
write_mov_ri16($rd, ($imm & 0xffff), 0);
my $highhalf = ($imm >> 16) & 0xffff;
write_mov_ri16($rd, $highhalf, 1) if $highhalf;
if ($is_aarch64 && $imm < 0) {
# sign extend to allow small negative imm constants
write_sxt32($rd, $rd);
}
}
# write random fp value of passed precision (1=single, 2=double, 4=quad)
sub write_random_fpreg_var($)
{
my ($precision) = @_;
my $randomize_low = 0;
if ($precision != 1 && $precision != 2 && $precision != 4) {
die "write_random_fpreg: invalid precision.\n";
}
my ($low, $high);
my $r = rand(100);
if ($r < 5) {
# +-0 (5%)
$low = $high = 0;
$high |= 0x80000000 if (rand() < 0.5);
} elsif ($r < 10) {
# NaN (5%)
# (plus a tiny chance of generating +-Inf)
$randomize_low = 1;
$high = rand(0xffffffff) | 0x7ff00000;
} elsif ($r < 15) {
# Infinity (5%)
$low = 0;
$high = 0x7ff00000;
$high |= 0x80000000 if (rand() < 0.5);
} elsif ($r < 30) {
# Denormalized number (15%)
# (plus tiny chance of +-0)
$randomize_low = 1;
$high = rand(0xffffffff) & ~0x7ff00000;
} else {
# Normalized number (70%)
# (plus a small chance of the other cases)
$randomize_low = 1;
$high = rand(0xffffffff);
}
for (my $i = 1; $i < $precision; $i++) {
if ($randomize_low) {
$low = rand(0xffffffff);
}
insn32($low);
}
insn32($high);
}
sub write_random_double_fpreg()
{
my ($low, $high);
my $r = rand(100);
if ($r < 5) {
# +-0 (5%)
$low = $high = 0;
$high |= 0x80000000 if (rand() < 0.5);
} elsif ($r < 10) {
# NaN (5%)
# (plus a tiny chance of generating +-Inf)
$low = rand(0xffffffff);
$high = rand(0xffffffff) | 0x7ff00000;
} elsif ($r < 15) {
# Infinity (5%)
$low = 0;
$high = 0x7ff00000;
$high |= 0x80000000 if (rand() < 0.5);
} elsif ($r < 30) {
# Denormalized number (15%)
# (plus tiny chance of +-0)
$low = rand(0xffffffff);
$high = rand(0xffffffff) & ~0x7ff00000;
} else {
# Normalized number (70%)
# (plus a small chance of the other cases)
$low = rand(0xffffffff);
$high = rand(0xffffffff);
}
insn32($low);
insn32($high);
}
sub write_random_single_fpreg()
{
my ($value);
my $r = rand(100);
if ($r < 5) {
# +-0 (5%)
$value = 0;
$value |= 0x80000000 if (rand() < 0.5);
} elsif ($r < 10) {
# NaN (5%)
# (plus a tiny chance of generating +-Inf)
$value = rand(0xffffffff) | 0x7f800000;
} elsif ($r < 15) {
# Infinity (5%)
$value = 0x7f800000;
$value |= 0x80000000 if (rand() < 0.5);
} elsif ($r < 30) {
# Denormalized number (15%)
# (plus tiny chance of +-0)
$value = rand(0xffffffff) & ~0x7f800000;
} else {
# Normalized number (70%)
# (plus a small chance of the other cases)
$value = rand(0xffffffff);
}
insn32($value);
}
sub write_random_arm_fpreg()
{
# Write out 64 bits of random data intended to
# initialise an FP register.
# We tweak the "randomness" here to increase the
# chances of picking interesting values like
# NaN, -0.0, and so on, which would be unlikely
# to occur if we simply picked 64 random bits.
if (rand() < 0.5) {
write_random_fpreg_var(2); # double
} else {
write_random_fpreg_var(1); # single
write_random_fpreg_var(1); # single
}
}
sub write_random_arm_regdata($)
{
my ($fp_enabled) = @_;
# TODO hardcoded, also no d16-d31 initialisation
my $vfp = $fp_enabled ? 2 : 0; # 0 : no vfp, 1 : vfpd16, 2 : vfpd32
write_switch_to_arm();
# initialise all registers
if ($vfp == 1) {
insn32(0xe28f0008); # add r0, pc, #8
insn32(0xecb00b20); # vldmia r0!, {d0-d15}
} elsif ($vfp == 2) {
insn32(0xe28f000c); # add r0, pc, #12
insn32(0xecb00b20); # vldmia r0!, {d0-d15}
insn32(0xecf00b20); # vldmia r0!, {d16-d31}
} else {
insn32(0xe28f0004); # add r0, pc, #4
}
insn32(0xe8905fff); # ldmia r0, {r0-r12,r14}
my $datalen = 14;
$datalen += (32 * $vfp);
insn32(0xea000000 + ($datalen-1)); # b next
for (0..(($vfp * 16) - 1)) { # NB: never done for $vfp == 0
write_random_arm_fpreg();
}
# .word [14 words of data for r0..r12,r14]
for (0..13) {
insn32(rand(0xffffffff));
}
# next:
# clear the flags (NZCVQ and GE): msr APSR_nzcvqg, #0
insn32(0xe32cf000);
}
sub write_random_aarch64_fpdata()
{
# load floating point / SIMD registers
my $align = 16;
my $datalen = 32 * 16 + $align;
write_pc_adr(0, (3 * 4) + ($align - 1)); # insn 1
write_align_reg(0, $align); # insn 2
write_jump_fwd($datalen); # insn 3
# align safety
for (my $i = 0; $i < ($align / 4); $i++) {
insn32(rand(0xffffffff));
};
for (my $rt = 0; $rt <= 31; $rt++) {
write_random_fpreg_var(4); # quad
}
if ($enable_aarch64_ld1) {
# enable only when we have ld1
for (my $rt = 0; $rt <= 31; $rt += 4) {
insn32(0x4cdf2c00 | $rt); # ld1 {v0.2d-v3.2d}, [x0], #64
}
} else {
# temporarily use LDP instead
for (my $rt = 0; $rt <= 31; $rt += 2) {
insn32(0xacc10000 | ($rt + 1) << 10 | ($rt)); # ldp q0,q1,[x0],#32
}
}
}
sub write_random_aarch64_regdata($)
{
my ($fp_enabled) = @_;
# clear flags
insn32(0xd51b421f); # msr nzcv, xzr
if ($fp_enabled) {
# load floating point / SIMD registers
write_random_aarch64_fpdata();
}
# general purpose registers
for (my $i = 0; $i <= 30; $i++) {
# TODO full 64 bit pattern instead of 32
write_mov_ri($i, rand(0xffffffff));
}
}
sub write_random_register_data($)
{
my ($fp_enabled) = @_;
if ($is_aarch64) {
write_random_aarch64_regdata($fp_enabled);
} else {
write_random_arm_regdata($fp_enabled);
}
write_risuop($OP_COMPARE);
}
# put PC + offset into a register.
# this must emit an instruction of 4 bytes.
sub write_pc_adr($$)
{
my ($rd, $imm) = @_;
if ($is_aarch64) {
# C2.3.5 PC-relative address calculation
# The ADR instruction adds a signed, 21-bit value of the pc that fetched this instruction,
my ($immhi, $immlo) = ($imm >> 2, $imm & 0x3);
insn32(0x10000000 | $immlo << 29 | $immhi << 5 | $rd);
} else {
# A.2.3 ARM Core Registers:
# When executing an ARM instruction, PC reads as the address of the current insn plus 8.
$imm -= 8;
insn32(0xe28f0000 | $rd << 12 | $imm);
}
}
# clear bits in register to satisfy alignment.
# Must use exactly 4 instruction-bytes (one instruction on arm)
sub write_align_reg($$)
{
my ($rd, $align) = @_;
die "bad alignment!" if ($align < 2);
if ($is_aarch64) {
# and rd, rd, ~(align - 1) ; A64 BIC imm is an alias for AND
# Unfortunately we need to calculate the immr/imms/N values to get
# our desired immediate value. In this case we want to use an element
# size of 64, which means that N is 1, immS is the length of run of
# set bits in the mask, and immR is the rotation.
# N = 1, immR = 64 - ctz, imms = 63 - ctz
# (Note that an all bits-set mask is not encodable here, but
# the requirement for $align to be at least 2 avoids that.)
my $cnt = ctz($align);
insn32(0x92000000 | 1 << 22 | (64 - $cnt) << 16 | (63 - $cnt) << 10 | $rd << 5 | $rd);
} else {
# bic rd, rd, (align - 1)
insn32(0xe3c00000 | $rd << 16 | $rd << 12 | ($align - 1));
}
}
# jump ahead of n bytes starting from next instruction
sub write_jump_fwd($)
{
my ($len) = @_;
if ($is_aarch64) {
# b pc + len
insn32(0x14000000 | (($len / 4) + 1));
} else {
# b pc + len
insn32(0xea000000 | (($len / 4) - 1));
}
}
sub write_memblock_setup()
{
# Write code which sets up the memory block for loads and stores.
# We set r0 to point to a block of 8K length
# of random data, aligned to the maximum desired alignment.
write_switch_to_arm();
my $align = $MAXALIGN;
my $datalen = 8192 + $align;
if (($align > 255) || !is_pow_of_2($align) || $align < 4) {
die "bad alignment!";
}
# set r0 to (datablock + (align-1)) & ~(align-1)
# datablock is at PC + (4 * 4 instructions) = PC + 16
write_pc_adr(0, (4 * 4) + ($align - 1)); # insn 1
write_align_reg(0, $align); # insn 2
write_risuop($OP_SETMEMBLOCK); # insn 3
write_jump_fwd($datalen); # insn 4
for (my $i = 0; $i < $datalen / 4; $i++) {
insn32(rand(0xffffffff));
}
# next:
}
sub write_set_fpscr_arm($)
{
my ($fpscr) = @_;
write_switch_to_arm();
# movw r0, imm16
insn32(0xe3000000 | ($fpscr & 0xfff) | (($fpscr & 0xf000) << 4));
# movt r0, imm16
insn32(0xe3400000 | (($fpscr & 0xf0000000) >> 12) | (($fpscr & 0x0fff0000) >> 16));
# vmsr fpscr, r0
insn32(0xeee10a10);
}
sub write_set_fpscr_aarch64($)
{
# on aarch64 we have split fpcr and fpsr registers.
# Status will be initialized to 0, while user param controls fpcr.
my ($fpcr) = @_;
write_mov_ri(0, 0);
insn32(0xd51b4420); # msr fpsr, x0
write_mov_ri(0, $fpcr);
insn32(0xd51b4400); # msr fpcr, x0
}
sub write_set_fpscr($)
{
my ($fpscr) = @_;
if ($is_aarch64) {
write_set_fpscr_aarch64($fpscr);
} else {
write_set_fpscr_arm($fpscr);
}
}
# Functions used in memory blocks to handle addressing modes.
# These all have the same basic API: they get called with parameters
# corresponding to the interesting fields of the instruction,
# and should generate code to set up the base register to be
# valid. They must return the register number of the base register.
# The last (array) parameter lists the registers which are trashed
# by the instruction (ie which are the targets of the load).
# This is used to avoid problems when the base reg is a load target.
# Global used to communicate between align(x) and reg() etc.
my $alignment_restriction;
sub align($)
{
my ($a) = @_;
if (!is_pow_of_2($a) || ($a < 0) || ($a > $MAXALIGN)) {
die "bad align() value $a\n";
}
$alignment_restriction = $a;
}
# XXX claudio: this seems to get the full address, not the offset.
sub write_get_offset()
{
# Emit code to get a random offset within the memory block, of the
# right alignment, into r0
# We require the offset to not be within 256 bytes of either
# end, to (more than) allow for the worst case data transfer, which is
# 16 * 64 bit regs
my $offset = (rand(2048 - 512) + 256) & ~($alignment_restriction - 1);
write_mov_ri(0, $offset);
write_risuop($OP_GETMEMBLOCK);
}
sub reg($@)
{
my ($base, @trashed) = @_;
write_get_offset();
# Now r0 is the address we want to do the access to,
# so just move it into the basereg
if ($base != 0) {
write_mov_rr($base, 0);
write_mov_ri(0, 0);
}
if (grep $_ == $base, @trashed) {
return -1;
}
return $base;
}
sub reg_plus_imm($$@)
{
# Handle reg + immediate addressing mode
my ($base, $imm, @trashed) = @_;
if ($imm == 0) {
return reg($base, @trashed);
}
write_get_offset();
# Now r0 is the address we want to do the access to,
# so set the basereg by doing the inverse of the
# addressing mode calculation, ie base = r0 - imm
# We could do this more cleverly with a sub immediate.
if ($base != 0) {
write_mov_ri($base, $imm);
write_sub_rrr($base, 0, $base);
# Clear r0 to avoid register compare mismatches
# when the memory block location differs between machines.
write_mov_ri(0, 0);
} else {
# We borrow r1 as a temporary (not a problem
# as long as we don't leave anything in a register
# which depends on the location of the memory block)
write_mov_ri(1, $imm);
write_sub_rrr($base, 0, 1);
}
if (grep $_ == $base, @trashed) {
return -1;
}
return $base;
}
sub reg_minus_imm($$@)
{
my ($base, $imm, @trashed) = @_;
return reg_plus_imm($base, -$imm, @trashed);
}
sub reg_plus_reg_shifted($$$@)
{
# handle reg + reg LSL imm addressing mode
my ($base, $idx, $shift, @trashed) = @_;
if ($shift < 0 || $shift > 4 || (!$is_aarch64 && $shift == 4)) {
print ("\n(shift) $shift\n");
print ("\n(arch) $is_aarch64\n");
die "reg_plus_reg_shifted: bad shift size\n";
}
my $savedidx = 0;
if ($idx == 0) {
# save the index into some other register for the
# moment, because the risuop will trash r0
$idx = 1;
$idx++ if $idx == $base;
$savedidx = 1;
write_mov_rr($idx, 0);
}
# Get a random offset within the memory block, of the
# right alignment.
write_get_offset();
# Now r0 is the address we want to do the access to,
# so set the basereg by doing the inverse of the
# addressing mode calculation, ie base = r0 - idx LSL imm
# LSL x is shift type 0,
write_sub_rrrs($base, 0, $idx, $SHIFT_LSL, $shift);
if ($savedidx) {
# We can move this back to r0 now
write_mov_rr(0, $idx);
} elsif ($base != 0) {
write_mov_ri(0, 0);
}
if (grep $_ == $base, @trashed) {
return -1;
}
return $base;
}
sub reg_plus_reg($$@)
{
my ($base, $idx, @trashed) = @_;
return reg_plus_reg_shifted($base, $idx, 0, @trashed);
}
sub gen_one_insn($$)
{
# Given an instruction-details array, generate an instruction
my $constraintfailures = 0;
INSN: while(1) {
my ($forcecond, $rec) = @_;
my $insn = int(rand(0xffffffff));
my $insnname = $rec->{name};
my $insnwidth = $rec->{width};
my $fixedbits = $rec->{fixedbits};
my $fixedbitmask = $rec->{fixedbitmask};
my $constraint = $rec->{blocks}{"constraints"};
my $memblock = $rec->{blocks}{"memory"};
$insn &= ~$fixedbitmask;
$insn |= $fixedbits;
for my $tuple (@{ $rec->{fields} }) {
my ($var, $pos, $mask) = @$tuple;
my $val = ($insn >> $pos) & $mask;
# XXX (claudio) ARM-specific - maybe move to arm.risu?
# Check constraints here:
# not allowed to use or modify sp or pc
if (!$is_aarch64) {
next INSN if ($var =~ /^r/ && (($val == 13) || ($val == 15)));
# Some very arm-specific code to force the condition field
# to 'always' if requested.
if ($forcecond) {
if ($var eq "cond") {
$insn &= ~ ($mask << $pos);
$insn |= (0xe << $pos);
}
}
}
}
if (defined $constraint) {
# user-specified constraint: evaluate in an environment
# with variables set corresponding to the variable fields.
my $v = eval_with_fields($insnname, $insn, $rec, "constraints", $constraint);
if (!$v) {
$constraintfailures++;
if ($constraintfailures > 10000) {
print "10000 consecutive constraint failures for $insnname constraints string:\n$constraint\n";
exit (1);
}
next INSN;
}
}
# OK, we got a good one
$constraintfailures = 0;
my $basereg;
if (defined $memblock) {
# This is a load or store. We simply evaluate the block,
# which is expected to be a call to a function which emits
# the code to set up the base register and returns the
# number of the base register.
# Default alignment requirement for ARM is 4 bytes,
# we use 16 for Aarch64, although often unnecessary and overkill.
if ($is_aarch64) {
align(16);
} else {
align(4);
}
$basereg = eval_with_fields($insnname, $insn, $rec, "memory", $memblock);
if ($is_aarch64) {
data_barrier();
}
}
if ($is_thumb) {
# Since the encoding diagrams in the ARM ARM give 32 bit
# Thumb instructions as low half | high half, we
# flip the halves here so that the input format in
# the config file can be in the same order as the ARM.
# For a 16 bit Thumb instruction the generated insn is in
# the high halfword (because we didn't bother to readjust
# all the bit positions in parse_config_file() when we
# got to the end and found we only had 16 bits).
insn16($insn >> 16);
if ($insnwidth == 32) {
insn16($insn & 0xffff);
}
} else {
# ARM is simple, always a 32 bit word
insn32($insn);
}
if (defined $memblock) {
# Clean up following a memory access instruction:
# we need to turn the (possibly written-back) basereg
# into an offset from the base of the memory block,
# to avoid making register values depend on memory layout.
# $basereg -1 means the basereg was a target of a load
# (and so it doesn't contain a memory address after the op)
if ($is_aarch64) {
data_barrier();
}
if ($basereg != -1) {
write_mov_ri(0, 0);
write_risuop($OP_GETMEMBLOCK);
write_sub_rrr($basereg, $basereg, 0);
write_mov_ri(0, 0);
}
write_risuop($OP_COMPAREMEM);
}
return;
}
}
sub write_test_code($$$$$$$$)
{
my ($params) = @_;
my $arch = $params->{ 'arch' };
my $subarch = $params->{ 'subarch' };
if ($subarch && $subarch eq 'aarch64') {
$test_thumb = 0;
$is_aarch64 = 1;
} elsif ($subarch && $subarch eq 'thumb') {
$test_thumb = 1;
$is_aarch64 = 0;
} else {
$test_thumb = 0;
$is_aarch64 = 0;
}
my $condprob = $params->{ 'condprob' };
my $fpscr = $params->{ 'fpscr' };
my $numinsns = $params->{ 'numinsns' };
my $fp_enabled = $params->{ 'fp_enabled' };
my $outfile = $params->{ 'outfile' };
my @pattern_re = @{ $params->{ 'pattern_re' } };
my @not_pattern_re = @{ $params->{ 'not_pattern_re' } };
my %insn_details = %{ $params->{ 'details' } };
open_bin($outfile);
# convert from probability that insn will be conditional to
# probability of forcing insn to unconditional
$condprob = 1 - $condprob;
# TODO better random number generator?
srand(0);
# Get a list of the insn keys which are permitted by the re patterns
my @keys = sort keys %insn_details;
if (@pattern_re) {
my $re = '\b((' . join(')|(',@pattern_re) . '))\b';
@keys = grep /$re/, @keys;
}
# exclude any specifics
if (@not_pattern_re) {
my $re = '\b((' . join(')|(',@not_pattern_re) . '))\b';
@keys = grep !/$re/, @keys;
}
if (!@keys) {
print STDERR "No instruction patterns available! (bad config file or --pattern argument?)\n";
exit(1);
}
print "Generating code using patterns: @keys...\n";
progress_start(78, $numinsns);
if ($fp_enabled) {
write_set_fpscr($fpscr);
}
if (grep { defined($insn_details{$_}->{blocks}->{"memory"}) } @keys) {
write_memblock_setup();
}
# memblock setup doesn't clean its registers, so this must come afterwards.
write_random_register_data($fp_enabled);
write_switch_to_test_mode();
for my $i (1..$numinsns) {
my $insn_enc = $keys[int rand (@keys)];
#dump_insn_details($insn_enc, $insn_details{$insn_enc});
my $forcecond = (rand() < $condprob) ? 1 : 0;
gen_one_insn($forcecond, $insn_details{$insn_enc});
write_risuop($OP_COMPARE);
# Rewrite the registers periodically. This avoids the tendency
# for the VFP registers to decay to NaNs and zeroes.
if ($periodic_reg_random && ($i % 100) == 0) {
write_random_register_data($fp_enabled);
write_switch_to_test_mode();
}
progress_update($i);
}
write_risuop($OP_TESTEND);
progress_end();
close_bin();
}
1;