-
Notifications
You must be signed in to change notification settings - Fork 3
/
thumb.risu
439 lines (382 loc) · 16.1 KB
/
thumb.risu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
###############################################################################
# Copyright (c) 2010 Linaro Limited
# All rights reserved. This program and the accompanying materials
# are made available under the terms of the Eclipse Public License v1.0
# which accompanies this distribution, and is available at
# http://www.eclipse.org/legal/epl-v10.html
#
# Contributors:
# Peter Maydell (Linaro) - initial implementation
###############################################################################
# Input file for risugen defining Thumb instructions
.mode arm.thumb
#ADD T1 000 1100 rm:3 rn:3 rd:3
#ADD T3 11101 01 1000 s rn:4 0 imma:3 rd:4 immb:2 type:2 rm:4
#QDADD T1 11111 010 1000 rn:4 1111 rd:4 1001 rm:4
#QADD T1 11111 010 1000 rn:4 1111 rd:4 1000 rm:4
#QDSUB T1 11111 010 1000 rn:4 1111 rd:4 1011 rm:4
#QSUB T1 11111 010 1000 rn:4 1111 rd:4 1010 rm:4
PKH T1 11101 01 0110 0 rn:4 0 imma:3 rd:4 immb:2 tb 0 rm:4
# 32x32->64 but result is high word only
SMMLA T1 11111 0110 101 rn:4 ra:4 rd:4 000 r rm:4
SMMLS T1 11111 0110 110 rn:4 ra:4 rd:4 000 r rm:4
# Note that this doesn't overlap with SMMLA because of the implicit
# constraints on registers fields (ie not 13 or 15)
SMMUL T1 11111 0110 101 rn:4 1111 rd:4 000 r rm:4
# preload and memory hint space (in the byte and halfword
# load space, where Rt == 15).
# The constraint is to avoid UNPREDICTABLE space
HINTSPACE T1 111 1100 op1:2 0 z 1 y:4 1111 op2:6 any:6 { ($y == 15) || (($op1 & 1) != 0) || !((($op2 & 0x24) == 0x24) || (($op2 & 0x3c) == 0x38)) ; }
# VMLAL, VMLSL, VQDMLAL, VQDMLSL, VMULL, VQDMULL
# NB that enc T1 is actually VMLA/VMLS only, T2 is VMLAL/VMLSL only
VMLAL T2 111 u 1111 1 d sz:2 vn:4 vd:3 0 10 op 0 n 0 m 0 vm:4 { $sz != 3; }
# VQDMLAL and VQDMLSL (not scalar form)
VQDLAL T1 1110 1111 1 d sz:2 vn:4 vd:3 0 10 op 1 n 0 m 0 vm:4 { ($sz != 3) && ($sz != 0); }
# VMULL (excludes the polynomial case!)
VMULL T2 111 u 1111 1 d sz:2 vn:4 vd:3 0 11 0 0 n 0 m 0 vm:4 { ($sz != 3) && ($sz != 0); }
# VQDMULL (not scalar form)
VQDMULL T1 1110 1111 1 d sz:2 vn:4 vd:3 0 1101 n 0 m 0 vm:4 { ($sz != 3) && ($sz != 0); }
MOVS T2 000 00 00000 rm:3 rd:3
# saturating add/sub
UQADD16 T1 11111 010 1001 rn:4 1111 rd:4 0101 rm:4
UQADD8 T1 11111 010 1000 rn:4 1111 rd:4 0101 rm:4
UQSUB16 T1 11111 010 1101 rn:4 1111 rd:4 0101 rm:4
UQSUB8 T1 11111 010 1100 rn:4 1111 rd:4 0101 rm:4
# ditto, signed
QADD16 T1 11111 010 1001 rn:4 1111 rd:4 0001 rm:4
QADD8 T1 11111 010 1000 rn:4 1111 rd:4 0001 rm:4
QSUB16 T1 11111 010 1101 rn:4 1111 rd:4 0001 rm:4
QSUB8 T1 11111 010 1100 rn:4 1111 rd:4 0001 rm:4
# dual multiplies
SMLAD T1 11111 0110 010 rn:4 ra:4 rd:4 000 m rm:4
SMUAD T1 11111 0110 010 rn:4 1111 rd:4 000 m rm:4
SMLSD T1 11111 0110 100 rn:4 ra:4 rd:4 000 m rm:4
SMUSD T1 11111 0110 100 rn:4 1111 rd:4 000 m rm:4
SMLALD T1 11111 0111 100 rn:4 rdlo:4 rdhi:4 110 m rm:4 { $rdhi != $rdlo; }
SMLSLD T1 11111 0111 101 rn:4 rdlo:4 rdhi:4 110 m rm:4 { $rdhi != $rdlo; }
# Basic Thumb-2 data ops
# register ops
AND T1 010000 0000 rm:3 rd:3
AND T2 11101 01 0000 s rn:4 0 imm:3 rd:4 imm2:2 type:2 rm:4
BIC T1 010000 1110 rm:3 rd:3
BIC T2 11101 01 0001 s rn:4 0 imm:3 rd:4 imm2:2 type:2 rm:4
# divide (for A profile, A15 and above only)
SDIV T1 11111 011100 1 rn:4 1111 rd:4 1111 rm:4
UDIV T1 11111 011101 1 rn:4 1111 rd:4 1111 rm:4
##############################################################################
# Loads and stores
##############################################################################
# Not supported:
# * PC-relative loads and stores (risu limitation)
# * load/store exclusive (side effects too hard to test with risu)
# * ldc/stc/ldc2/stc2 (risu doesn't know about copro registers)
# Not yet encoded in this file (but should be doable):
# * load/store multiple
# * ldrd/strd
# * neon and VFP loads and stores
# from table A6-18:
# LDR (imm, thumb)
LDR_imm T1 01101 imm:5 rn:3 rt:3 \
!memory { reg_plus_imm($rn, $imm << 2, $rt); }
# LDR_imm encoding T2 is sp-relative loads, not supported by risu
LDR_imm T3 11111 000 1101 rn:4 rt:4 imm:12 \
!memory { reg_plus_imm($rn, $imm, $rt); }
# T4, W=0 case: P=0 UNDEF, P=1 U=1 is LDRT, so PUW=100 is only option (plain negative offset)
LDR_imm T4a 11111 000 0101 rn:4 rt:4 1 1 0 0 imm:8 \
!memory { reg_minus_imm($rn, $imm, $rt); }
# T4, P=0 W=0 : UNDEF ; note that we mustn't have a !memory block for this
LDR_imm T4b 11111 000 0101 rn:4 rt:4 1 0 u 0 imm:8
# T4, W=1 case: rn == rt is unpredictable. We have to
# split out the various subcase of P and U because the
# addressing modes are different
# P=U=0 : post-indexed, negative
LDR_imm T4c 11111 000 0101 rn:4 rt:4 1 0 0 1 imm:8 \
!constraints { $rn != $rt } \
!memory { reg_minus_imm($rn, $imm, $rt); }
# P=0,U=1 : postindexed, positive
LDR_imm T4d 11111 000 0101 rn:4 rt:4 1 0 1 1 imm:8 \
!constraints { $rn != $rt } \
!memory { reg_plus_imm($rn, $imm, $rt); }
# P=1 : preindexed
LDR_imm T4e 11111 000 0101 rn:4 rt:4 1 1 u 1 imm:8 \
!constraints { $rn != $rt } \
!memory { reg($rn, $rt); }
# LDRT
LDRT T1 11111 000 0101 rn:4 rt:4 1110 imm:8 \
!memory { reg_plus_imm($rn, $imm, $rt); }
# LDR (reg)
# The constraint that base and index registers be different
# isn't imposed by the architecture but by risugen.
LDR T1 0101 100 rm:3 rn:3 rt:3 \
!constraints { $rm != $rn; } \
!memory { reg_plus_reg($rn, $rm, $rt); }
LDR T2 11111 000 0101 rn:4 rt:4 0 00000 imm:2 rm:4 \
!constraints { $rm != $rn; } \
!memory { reg_plus_reg_shifted($rn, $rm, $imm, $rt); }
# LDR (literal)
# risugen doesn't support pc-relative loads/stores yet.
# A6-19
# LDRH (lit) -- pc-relative addressing not supported
# LDRH (imm, thumb)
LDRH_imm T1 10001 imm:5 rn:3 rt:3 \
!memory { reg_plus_imm($rn, $imm << 2, $rt); }
LDRH_imm T2 11111 000 1011 rn:4 rt:4 imm:12 \
!memory { reg_plus_imm($rn, $imm, $rt); }
# T3, W=0 case: P=0 UNDEF, P=1 U=1 is LDRHT, so PUW=100 is only option (plain negative offset)
LDRH_imm T3a 11111 000 0011 rn:4 rt:4 1 1 0 0 imm:8 \
!memory { reg_minus_imm($rn, $imm, $rt); }
# T3, P=0 W=0 : UNDEF ; note that we mustn't have a !memory block for this
LDRH_imm T3b 11111 000 0011 rn:4 rt:4 1 0 u 0 imm:8
# T3, W=1 case: rn == rt is unpredictable. We have to
# split out the various subcase of P and U because the
# addressing modes are different
# P=U=0 : post-indexed, negative
LDRH_imm T3c 11111 000 0011 rn:4 rt:4 1 0 0 1 imm:8 \
!constraints { $rn != $rt } \
!memory { reg_minus_imm($rn, $imm, $rt); }
# P=0,U=1 : postindexed, positive
LDRH_imm T3d 11111 000 0011 rn:4 rt:4 1 0 1 1 imm:8 \
!constraints { $rn != $rt } \
!memory { reg_plus_imm($rn, $imm, $rt); }
# P=1 : preindexed
LDRH_imm T3e 11111 000 0011 rn:4 rt:4 1 1 u 1 imm:8 \
!constraints { $rn != $rt } \
!memory { reg($rn, $rt); }
# LDRHT
LDRHT T1 11111 000 0011 rn:4 rt:4 1110 imm:8 \
!memory { reg_plus_imm($rn, $imm, $rt); }
# LDRH (reg)
# The constraint that base and index registers be different
# isn't imposed by the architecture but by risugen.
LDRH T1 0101 101 rm:3 rn:3 rt:3 \
!constraints { $rm != $rn; } \
!memory { reg_plus_reg($rn, $rm, $rt); }
LDRH T2 11111 000 0011 rn:4 rt:4 0 00000 imm:2 rm:4 \
!constraints { $rm != $rn; } \
!memory { reg_plus_reg_shifted($rn, $rm, $imm, $rt); }
# LDRSH (imm)
LDRSH_imm T1 11111 001 1011 rn:4 rt:4 imm:12 \
!memory { reg_plus_imm($rn, $imm, $rt); }
# W=0 case: PUW=100 (others are UNDEF or LDRSHT)
LDRSH_imm T2a 11111 001 0011 rn:4 rt:4 1 1 0 0 imm:8 \
!memory { reg_minus_imm($rn, $imm, $rt); }
# W=0 P=0 UNDEF case
LDRSH_imm T2b 11111 001 0011 rn:4 rt:4 1 0 u 0 imm:8
# T3, W=1 case: rn == rt is unpredictable. We have to
# split out the various subcase of P and U because the
# addressing modes are different
# P=U=0 : post-indexed, negative
LDRSH_imm T2c 11111 001 0011 rn:4 rt:4 1 0 0 1 imm:8 \
!constraints { $rn != $rt } \
!memory { reg_minus_imm($rn, $imm, $rt); }
# P=0,U=1 : postindexed, positive
LDRSH_imm T2d 11111 001 0011 rn:4 rt:4 1 0 1 1 imm:8 \
!constraints { $rn != $rt } \
!memory { reg_plus_imm($rn, $imm, $rt); }
# P=1 : preindexed
LDRSH_imm T2e 11111 001 0011 rn:4 rt:4 1 1 u 1 imm:8 \
!constraints { $rn != $rt } \
!memory { reg($rn, $rt); }
# LDRSHT
LDRSHT T1 11111 001 0011 rn:4 rt:4 1110 imm:8 \
!memory { reg_plus_imm($rn, $imm, $rt); }
# LDRSH (reg)
LDRSH T1 0101 111 rm:3 rn:3 rt:3 \
!constraints { $rm != $rn; } \
!memory { reg_plus_reg($rn, $rm, $rt); }
LDRSH T2 11111 001 0011 rn:4 rt:4 0 00000 imm:2 rm:4 \
!constraints { $rm != $rn; } \
!memory { reg_plus_reg_shifted($rn, $rm, $imm, $rt); }
# A6-20
# LDRB (lit) -- pc-relative addressing not supported
# LDRB (imm, thumb)
LDRB_imm T1 01111 imm:5 rn:3 rt:3 \
!memory { reg_plus_imm($rn, $imm << 2, $rt); }
LDRB_imm T2 11111 000 1001 rn:4 rt:4 imm:12 \
!memory { reg_plus_imm($rn, $imm, $rt); }
# T3, W=0 case: P=0 UNDEF, P=1 U=1 is LDRBT, so PUW=100 is only option (plain negative offset)
LDRB_imm T3a 11111 000 0001 rn:4 rt:4 1 1 0 0 imm:8 \
!memory { reg_minus_imm($rn, $imm, $rt); }
# T3, P=0 W=0 : UNDEF ; note that we mustn't have a !memory block for this
LDRB_imm T3b 11111 000 0001 rn:4 rt:4 1 0 u 0 imm:8
# T3, W=1 case: rn == rt is unpredictable. We have to
# split out the various subcase of P and U because the
# addressing modes are different
# P=U=0 : post-indexed, negative
LDRB_imm T3c 11111 000 0001 rn:4 rt:4 1 0 0 1 imm:8 \
!constraints { $rn != $rt } \
!memory { reg_minus_imm($rn, $imm, $rt); }
# P=0,U=1 : postindexed, positive
LDRB_imm T3d 11111 000 0001 rn:4 rt:4 1 0 1 1 imm:8 \
!constraints { $rn != $rt } \
!memory { reg_plus_imm($rn, $imm, $rt); }
# P=1 : preindexed
LDRB_imm T3e 11111 000 0001 rn:4 rt:4 1 1 u 1 imm:8 \
!constraints { $rn != $rt } \
!memory { reg($rn, $rt); }
# LDRBT
LDRBT T1 11111 000 0001 rn:4 rt:4 1110 imm:8 \
!memory { reg_plus_imm($rn, $imm, $rt); }
# LDRB (reg)
# The constraint that base and index registers be different
# isn't imposed by the architecture but by risugen.
LDRB T1 0101 110 rm:3 rn:3 rt:3 \
!constraints { $rm != $rn; } \
!memory { reg_plus_reg($rn, $rm, $rt); }
LDRB T2 11111 0000 001 rn:4 rt:4 0 00000 imm:2 rm:4 \
!constraints { $rm != $rn; } \
!memory { reg_plus_reg_shifted($rn, $rm, $imm, $rt); }
# LDRSB (imm)
LDRSB_imm T1 11111 001 1001 rn:4 rt:4 imm:12 \
!memory { reg_plus_imm($rn, $imm, $rt); }
# W=0 case: PUW=100 (others are UNDEF or LDRSBT)
LDRSB_imm T2a 11111 001 0001 rn:4 rt:4 1 1 0 0 imm:8 \
!memory { reg_minus_imm($rn, $imm, $rt); }
# W=0 P=0 UNDEF case
LDRSB_imm T2b 11111 001 0001 rn:4 rt:4 1 0 u 0 imm:8
# T3, W=1 case: rn == rt is unpredictable. We have to
# split out the various subcase of P and U because the
# addressing modes are different
# P=U=0 : post-indexed, negative
LDRSB_imm T2c 11111 001 0001 rn:4 rt:4 1 0 0 1 imm:8 \
!constraints { $rn != $rt } \
!memory { reg_minus_imm($rn, $imm, $rt); }
# P=0,U=1 : postindexed, positive
LDRSB_imm T2d 11111 001 0001 rn:4 rt:4 1 0 1 1 imm:8 \
!constraints { $rn != $rt } \
!memory { reg_plus_imm($rn, $imm, $rt); }
# P=1 : preindexed
LDRSB_imm T2e 11111 001 0001 rn:4 rt:4 1 1 u 1 imm:8 \
!constraints { $rn != $rt } \
!memory { reg($rn, $rt); }
# LDRSBT
LDRSBT T1 11111 001 0001 rn:4 rt:4 1110 imm:8 \
!memory { reg_plus_imm($rn, $imm, $rt); }
# LDRSB (reg)
LDRSB T1 0101 011 rm:3 rn:3 rt:3 \
!constraints { $rm != $rn; } \
!memory { reg_plus_reg($rn, $rm, $rt); }
LDRSB T2 11111 001 0001 rn:4 rt:4 0 00000 imm:2 rm:4 \
!constraints { $rm != $rn; } \
!memory { reg_plus_reg_shifted($rn, $rm, $imm, $rt); }
# A6-21 -- stores
# Note that constraints that we can't store the basereg
# are imposed by risu/risugen, not by the architecture.
# STRB (imm, thumb)
STRB_imm T1 01110 imm:5 rn:3 rt:3 \
!constraints { $rn != $rt; } \
!memory { reg_plus_imm($rn, $imm << 2); }
STRB_imm T2 11111 000 1000 rn:4 rt:4 imm:12 \
!constraints { $rn != $rt; } \
!memory { reg_plus_imm($rn, $imm); }
# PUW=110 is STRBT and PUW=0x0 is UNDEF, so W=0 means PUW=100
STRB_imm T3a 11111 000 0000 rn:4 rt:4 1 1 0 0 imm:8 \
!constraints { $rn != $rt; } \
!memory { reg_minus_imm($rn, $imm); }
# PUW=0x0 undef case
STRB_imm T3b 11111 000 0000 rn:4 rt:4 1 0 u 0 imm:8
# Writeback cases: rn==rt is unpredictable here
# P=U=0 : postindexed, negative
STRB_imm T3c 11111 000 0000 rn:4 rt:4 1 0 0 1 imm:8 \
!constraints { $rn != $rt; } \
!memory { reg_minus_imm($rn, $imm); }
# P=0,U=1 : postindexed, positive
STRB_imm T3d 11111 000 0000 rn:4 rt:4 1 0 1 1 imm:8 \
!constraints { $rn != $rt; } \
!memory { reg_plus_imm($rn, $imm); }
# P=1 : preindexed
STRB_imm T3e 11111 000 0000 rn:4 rt:4 1 1 u 1 imm:8 \
!constraints { $rn != $rt; } \
!memory { reg($rn); }
# STRBT
STRBT T1 11111 000 0000 rn:4 rt:4 1110 imm:8 \
!constraints { $rn != $rt; } \
!memory { reg_plus_imm($rn, $imm, $rt); }
# STRB (reg)
STRB T1 0101 010 rm:3 rn:3 rt:3 \
!constraints { $rn != $rt && $rn != $rm; } \
!memory { reg_plus_reg($rn, $rm); }
# both the constraints here are risugen-imposed, not architectural
STRB T2 11111 000 0000 rn:4 rt:4 000000 imm:2 rm:4 \
!constraints { $rn != $rt && $rm != $rn; } \
!memory { reg_plus_reg_shifted($rn, $rm, $imm); }
# STRH (imm, thumb)
STRH_imm T1 10000 imm:5 rn:3 rt:3 \
!constraints { $rn != $rt; } \
!memory { reg_plus_imm($rn, $imm << 2); }
STRH_imm T2 11111 000 1010 rn:4 rt:4 imm:12 \
!constraints { $rn != $rt; } \
!memory { reg_plus_imm($rn, $imm); }
# PUW=110 is STRHT and PUW=0x0 is UNDEF, so W=0 means PUW=100
STRH_imm T3a 11111 000 0010 rn:4 rt:4 1 1 0 0 imm:8 \
!constraints { $rn != $rt; } \
!memory { reg_minus_imm($rn, $imm); }
# PUW=0x0 undef case
STRH_imm T3b 11111 000 0010 rn:4 rt:4 1 0 u 0 imm:8
# Writeback cases: rn==rt is unpredictable here
# P=U=0 : postindexed, negative
STRH_imm T3c 11111 000 0010 rn:4 rt:4 1 0 0 1 imm:8 \
!constraints { $rn != $rt; } \
!memory { reg_minus_imm($rn, $imm); }
# P=0,U=1 : postindexed, positive
STRH_imm T3d 11111 000 0010 rn:4 rt:4 1 0 1 1 imm:8 \
!constraints { $rn != $rt; } \
!memory { reg_plus_imm($rn, $imm); }
# P=1 : preindexed
STRH_imm T3e 11111 000 0010 rn:4 rt:4 1 1 u 1 imm:8 \
!constraints { $rn != $rt; } \
!memory { reg($rn); }
# STRHT
STRHT T1 11111 000 0010 rn:4 rt:4 1110 imm:8 \
!constraints { $rn != $rt; } \
!memory { reg_plus_imm($rn, $imm, $rt); }
# STRH (reg)
STRH T1 0101 001 rm:3 rn:3 rt:3 \
!constraints { $rn != $rt && $rn != $rm; } \
!memory { reg_plus_reg($rn, $rm); }
# both the constraints here are risugen-imposed, not architectural
STRH T2 11111 000 0010 rn:4 rt:4 000000 imm:2 rm:4 \
!constraints { $rn != $rt && $rm != $rn; } \
!memory { reg_plus_reg_shifted($rn, $rm, $imm); }
# STR (imm, thumb)
STR_imm T1 01100 imm:5 rn:3 rt:3 \
!constraints { $rn != $rt; } \
!memory { reg_plus_imm($rn, $imm << 2); }
# STR imm T2 is sp-relative
STR_imm T3 11111 000 1100 rn:4 rt:4 imm:12 \
!constraints { $rn != $rt; } \
!memory { reg_plus_imm($rn, $imm); }
# PUW=110 is STRT and PUW=0x0 is UNDEF, so W=0 means PUW=100
STR_imm T4a 11111 000 0100 rn:4 rt:4 1 1 0 0 imm:8 \
!constraints { $rn != $rt; } \
!memory { reg_minus_imm($rn, $imm); }
# PUW=0x0 undef case
STR_imm T4b 11111 000 0100 rn:4 rt:4 1 0 u 0 imm:8
# Writeback cases: rn==rt is unpredictable here
# P=U=0 : postindexed, negative
STR_imm T4c 11111 000 0100 rn:4 rt:4 1 0 0 1 imm:8 \
!constraints { $rn != $rt; } \
!memory { reg_minus_imm($rn, $imm); }
# P=0,U=1 : postindexed, positive
STR_imm T4d 11111 000 0100 rn:4 rt:4 1 0 1 1 imm:8 \
!constraints { $rn != $rt; } \
!memory { reg_plus_imm($rn, $imm); }
# P=1 : preindexed
STR_imm T4e 11111 000 0100 rn:4 rt:4 1 1 u 1 imm:8 \
!constraints { $rn != $rt; } \
!memory { reg($rn); }
# STRT
STRT T1 11111 000 0100 rn:4 rt:4 1110 imm:8 \
!constraints { $rn != $rt; } \
!memory { reg_plus_imm($rn, $imm, $rt); }
# STR (reg)
STR T1 0101 000 rm:3 rn:3 rt:3 \
!constraints { $rn != $rt && $rn != $rm; } \
!memory { reg_plus_reg($rn, $rm); }
# both the constraints here are risugen-imposed, not architectural
STR T2 11111 000 0100 rn:4 rt:4 000000 imm:2 rm:4 \
!constraints { $rn != $rt && $rm != $rn; } \
!memory { reg_plus_reg_shifted($rn, $rm, $imm); }
##############################################################################
# V8 only instructions
CRC32 T1 111 1101 011 0 c rn:4 1111 rd:4 10 sz:2 rm:4 !constraints { $sz != 3; }