-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjc3.tex
2118 lines (2020 loc) · 73.4 KB
/
jc3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% Chapter 4, Section 1 _Linear Algebra_ Jim Hefferon
% http://joshua.smcvt.edu/linearalgebra
% 2001-Jun-12
\section{Nilpotence}
This chapter shows that every square matrix is similar to one
that is a sum of two kinds of simple matrices.
The prior section
focused on the first simple kind, diagonal matrices.
We now consider the other kind.
\subsectionoptional{Self-Composition}\index{self composition!of maps}\index{map!self composition}\index{transformation!composed with itself}\index{composition!self}
% \noindent\textit{This subsection is optional, although it is necessary
% for later material in this section and in the next one.}
Because a linear transformation $\map{t}{V}{V}$ has the same domain as
codomain, we can
compose $t$ with itself
\( t^2=\composed{t}{t} \),
and \( t^3=\composed{t}{\composed{t}{t}} \),
etc.\appendrefs{function iteration}\spacefactor=1000 %
\begin{center}
\includegraphics{ch5.1}
\end{center}
Note that the superscript
power notation $t^j$ for iterates of the transformations
fits with
the notation that we've used for their square matrix representations
because if $\rep{t}{B,B}=T$ then \( \rep{t^j}{B,B}=T^j \).
\begin{example} \label{ex:DerivIter}
For the derivative map \( \map{d/dx}{\polyspace_3}{\polyspace_3} \)
given by
\begin{equation*}
a+bx+cx^2+dx^3\xmapsunder{d/dx} b+2cx+3dx^2
\end{equation*}
the second power is the second derivative
\begin{equation*}
a+bx+cx^2+dx^3\xmapsunder{d^2/dx^2} 2c+6dx
\end{equation*}
the third power is the third derivative
\begin{equation*}
a+bx+cx^2+dx^3\xmapsunder{d^3/dx^3} 6d
\end{equation*}
and any higher power is the zero map.
\end{example}
\begin{example}
This transformation of the space $\matspace_{\nbyn{2}}$ of $\nbyn{2}$ matrices
\begin{equation*}
\begin{mat}
a &b \\
c &d
\end{mat}
\mapsunder{t}
\begin{mat}
b &a \\
d &0
\end{mat}
\end{equation*}
has this second power
\begin{equation*}
\begin{mat}
a &b \\
c &d
\end{mat}
\mapsunder{t^2}
\begin{mat}
a &b \\
0 &0
\end{mat}
\end{equation*}
and this third power.
\begin{equation*}
\begin{mat}
a &b \\
c &d
\end{mat}
\mapsunder{t^3}
\begin{mat}
b &a \\
0 &0
\end{mat}
\end{equation*}
After that, $t^4=t^2$ and $t^5=t^3$, etc.
\end{example}
\begin{example}
Consider the shift transformation $\map{t}{\C^3}{\C^3}$.
\begin{equation*}
\colvec{x \\ y \\ z} \mapsunder{t} \colvec{0 \\ x \\ y}
\end{equation*}
We have that
\begin{equation*}
\colvec{x \\ y \\ z} \mapsunder{t} \colvec{0 \\ x \\ y}
\mapsunder{t} \colvec{0 \\ 0 \\ x}
\mapsunder{t} \colvec{0 \\ 0 \\ 0}
\end{equation*}
so the range spaces descend to the trivial subspace.
\begin{equation*}
\rangespace{t}=\set{\colvec{0 \\ a \\ b}\suchthat a,b\in\C}
\qquad
\rangespace{t^2}=\set{\colvec{0 \\ 0 \\ c}\suchthat c\in\C}
\qquad
\rangespace{t^3}=\set{\colvec{0 \\ 0 \\ 0}}
\end{equation*}
\end{example}
These examples suggest that after some number of iterations
the map settles down.
\begin{lemma} \label{le:RangeAndNullChains}
For any transformation \( \map{t}{V}{V} \), the range spaces of the powers
form a descending chain
\begin{equation*}
V\supseteq \rangespace{t}\supseteq\rangespace{t^2}\supseteq\cdots
\end{equation*}
and the null spaces form an ascending chain.
\begin{equation*}
\set{\vec{0}}\subseteq\nullspace{t}\subseteq\nullspace{t^2}\subseteq\cdots
\end{equation*}
Further, there is a \( k \) such that
for powers less than $k$ the subsets are proper
so that if $j<k$ then $\rangespace{t^j}\supset\rangespace{t^{j+1}}$
and
$\nullspace{t^j}\subset\nullspace{t^{j+1}}$,
while for higher powers the sets are equal so that
if $j\geq k$ then $\rangespace{t^j}=\rangespace{t^{j+1}}$
and
$\nullspace{t^j}=\nullspace{t^{j+1}}$).
\end{lemma}
\begin{proof}
First recall that for any map the dimension of its range space
plus the dimension of its null space equals
the dimension of its domain.
So if the dimensions of the range spaces shrink then the
dimensions of the null spaces must rise.
We will do the range space half here and leave the rest for
\nearbyexercise{exer:RangeAndNullChains}.
We start by showing
that the range spaces form a chain.
If $\vec{w}\in\rangespace{t^{j+1}}$, so that
$\vec{w}=t^{j+1}(\vec{v})$ for some $\vec{v}$,
then $\vec{w}=t^{j}(\,t(\vec{v})\,)$.
Thus $\vec{w}\in\rangespace{t^{j}}$.
Next we verify the ``further'' property:
in the chain the subsets containments are proper
initially, and then from some power $k$ onward the range spaces are equal.
We first show that if any pair of adjacent range spaces in the
chain are equal \( \rangespace{t^{k}}=\rangespace{t^{k+1}} \)
then all subsequent ones are also equal
\( \rangespace{t^{k+1}}=\rangespace{t^{k+2}} \), etc.
This holds because
\( \map{t}{\rangespace{t^{k+1}}}{\rangespace{t^{k+2}}} \)
is the same map, with the same domain, as
\( \map{t}{\rangespace{t^{k}}}{\rangespace{t^{k+1}}} \) and
it therefore has the same range
\( \rangespace{t^{k+1}}=\rangespace{t^{k+2}} \)
(it holds for all higher powers by induction).
So if the chain of range spaces ever stops strictly decreasing then
from that point onward it is stable.
We end by showing that the chain must eventually stop decreasing.
Each range space is a subspace of the one before it.
For it to be a proper subspace it must be of strictly lower dimension
(see \nearbyexercise{exer:PropSubspStrictLowerDimen}).
These spaces are finite-dimensional and so the chain can fall for only
finitely many steps.
That is, the power $k$ is at most the dimension of $V$.
\end{proof}
\begin{example}
The derivative map $a+bx+cx^2+dx^3\xmapsunder{d/dx} b+2cx+3dx^2$
on $\polyspace_3$ has this chain of range spaces
\begin{equation*}
\rangespace{t^0}=\polyspace_3
\:\supset\:\rangespace{t^1}=\polyspace_2
\:\supset\:\rangespace{t^2}=\polyspace_1
\:\supset\:\rangespace{t^3}=\polyspace_0
\:\supset\:\rangespace{t^4}=\set{\zero}
% =\rangespace{t^5}=\set{\zero}=
% \,=\,\cdots
\end{equation*}
(all later elements of the chain are the trivial space).
And it has this chain of null spaces
\begin{equation*}
\nullspace{t^0}=\set{\zero}
\:\subset\: \nullspace{t^1}=\polyspace_0
\:\subset\:\nullspace{t^2}=\polyspace_1
\:\subset\:\nullspace{t^3}=\polyspace_2
\:\subset\:\nullspace{t^4}=\polyspace_3
\end{equation*}
(later elements are the entire space).
\end{example}
\begin{example} \label{exam:PolyRankFalls}
Let \( \map{t}{\polyspace_2}{\polyspace_2} \) be the map
\( c_0+c_1x+c_2x^2 \mapsto 2c_0+c_2x. \)
As the lemma describes, on
iteration the range space shrinks
\begin{equation*}
\rangespace{t^0}=\polyspace_2
\quad
\rangespace{t}=\set{a+bx\suchthat a,b\in\C}
\quad
\rangespace{t^2}=\set{a\suchthat a\in\C}
\end{equation*}
and then stabilizes $\rangespace{t^2}=\rangespace{t^3}=\cdots$
while the null space grows
\begin{equation*}
\nullspace{t^0}=\set{0}
\quad
\nullspace{t}=\set{cx\suchthat c\in\C}
\quad
\nullspace{t^2}=\set{cx+d\suchthat c,d\in\C}
\end{equation*}
and then stabilizes $\nullspace{t^2}=\nullspace{t^3}=\cdots$.
\end{example}
\begin{example}
The transformation \( \map{\pi}{\C^3}{\C^3} \) projecting onto the
first two coordinates
\begin{equation*}
\colvec{c_1 \\ c_2 \\ c_3}
\mapsunder{\pi}
\colvec{c_1 \\ c_2 \\ 0}
\end{equation*}
has \( \C^3\supset\rangespace{\pi}=\rangespace{\pi^2}=\cdots \)
and \( \set{\zero}\subset\nullspace{\pi}=\nullspace{\pi^2}=\cdots\, \)
where this is the range space and the null space.
\begin{equation*}
\rangespace{\pi}=\set{\colvec{a \\ b \\ 0}\suchthat a,b\in\C}
\qquad
\nullspace{\pi}=\set{\colvec{0 \\ 0 \\ c}\suchthat c\in\C}
\end{equation*}
\end{example}
\begin{definition}
Let \( t \) be a transformation on an \( n \)-dimensional space.
The \definend{generalized range space}\index{generalized range space}%
\index{range space!generalized}
(or \definend{closure of the range space\/}\index{closure!of range space}%
\index{range space!closure of})
is $\genrangespace{t}=\rangespace{t^n}$.
The \definend{generalized null space}\index{generalized null space}%
\index{null space!generalized}
(or \definend{closure of the null space\/}\index{closure!of null space}%
\index{null space!closure of})
is $\gennullspace{t}=\nullspace{t^n}$.
\end{definition}
This graph illustrates.
The horizontal axis gives the power~$j$ of a transformation.
The vertical axis gives
the dimension of the range space of $t^j$
as the distance above zero, and thus also shows the dimension of the
null space because the two add to the dimension $n$ of the domain.
\begin{center}
% \includegraphics{ch5.2}
\includegraphics{ch5.8}
\end{center}
On iteration
the rank falls and the nullity rises
until there is some $k$ such that
the map reaches a steady state
$\rangespace{t^k}=\rangespace{t^{k+1}}=\genrangespace{t}$
and $\nullspace{t^k}=\nullspace{t^{k+1}}=\gennullspace{t}$.
This must happen by the $n$-th iterate.
% The steady state's distance above zero is the dimension of the
% generalized range space
% and its distance below $n$ is the dimension of
% the generalized null space.
\begin{exercises}
\recommended \item
Give the chains of range spaces and null spaces for the zero and
identity transformations.
\begin{answer}
For the zero transformation,
no matter what the space, the chain of range spaces
is \( V\supset\set{\vec{0}}=\set{\vec{0}}=\cdots\, \)
and the chain of null spaces is \( \set{\vec{0}}\subset V=V=\cdots\, \).
For the identity transformation the chains are
\( V=V=V=\cdots \) and
\( \set{\vec{0}}=\set{\vec{0}}=\cdots\, \).
\end{answer}
\recommended\item
For each map,
give the chain of range spaces and the chain of null spaces,
and the generalized range space and the
generalized null space.
\begin{exparts}
\partsitem $\map{t_0}{\polyspace_2}{\polyspace_2}$,
$a+bx+cx^2\mapsto b+cx^2$
\partsitem $\map{t_1}{\Re^2}{\Re^2}$,
\begin{equation*}
\colvec{a \\ b}\mapsto\colvec{0 \\ a}
\end{equation*}
\partsitem $\map{t_2}{\polyspace_2}{\polyspace_2}$,
$a+bx+cx^2\mapsto b+cx+ax^2$
\partsitem $\map{t_3}{\Re^3}{\Re^3}$,
\begin{equation*}
\colvec{a \\ b \\ c}\mapsto\colvec{a \\ a \\ b}
\end{equation*}
\end{exparts}
\begin{answer}
\begin{exparts}
\partsitem Iterating $t_0$ twice
$a+bx+cx^2\mapsto b+cx^2\mapsto cx^2$
gives
\begin{equation*}
a+bx+cx^2\mapsunder{t_0^2}cx^2
\end{equation*}
and any higher power is the same map.
Thus, while $\rangespace{t_0}$ is the space of
quadratic polynomials
with no linear term $\set{p+rx^2\suchthat p,r\in \C}$,
and
$\rangespace{t_0^2}$ is the space of purely-quadratic polynomials
$\set{rx^2\suchthat r\in \C}$,
this is where the chain stabilizes
$\genrangespace{t_0}=\set{rx^2\suchthat n\in \C}$.
As for null spaces,
$\nullspace{t_0}$ is the space of purely-linear quadratic
polynomials $\set{qx\suchthat q\in \C}$, and
$\nullspace{t_0^2}$ is the space of quadratic polynomials
with no $x^2$ term $\set{p+qx\suchthat p,q\in \C}$, and
this is the end $\gennullspace{t_0}=\nullspace{t_0^2}$.
\partsitem The second power
\begin{equation*}
\colvec{a \\ b}
\mapsunder{t_1}\colvec{0 \\ a}
\mapsunder{t_1}\colvec{0 \\ 0}
\end{equation*}
is the zero map.
Consequently, the chain of range spaces
\begin{equation*}
\Re^2
\supset\set{\colvec{0 \\ p}\suchthat p\in\C}
\supset\set{\zero}
=\cdots
\end{equation*}
and the chain of null spaces
\begin{equation*}
\set{\zero}
\subset\set{\colvec{q \\ 0}\suchthat q\in\C}
\subset\Re^2
=\cdots
\end{equation*}
each has length two.
The generalized range space is the trivial subspace and the
generalized null space is the entire space.
\partsitem Iterates of this map cycle around
\begin{equation*}
a+bx+cx^2
\mapsunder{t_2} b+cx+ax^2
\mapsunder{t_2} c+ax+bx^2
\mapsunder{t_2} a+bx+cx^2
\;\cdots
\end{equation*}
and the chains of range spaces and null spaces are trivial.
\begin{equation*}
\polyspace_2=\polyspace_2=\cdots
\qquad
\set{\zero}=\set{\zero}=\cdots
\end{equation*}
Thus, obviously,
generalized spaces are $\genrangespace{t_2}=\polyspace_2$
and $\gennullspace{t_2}=\set{\zero}$.
\partsitem We have
\begin{equation*}
\colvec{a \\ b \\ c}
\mapsto\colvec{a \\ a \\ b}
\mapsto\colvec{a \\ a \\ a}
\mapsto\colvec{a \\ a \\ a}
\mapsto\cdots
\end{equation*}
and so the chain of range spaces
\begin{equation*}
\Re^3
\supset\set{\colvec{p \\ p \\ r}\suchthat p,r\in\C}
\supset\set{\colvec{p \\ p \\ p}\suchthat p\in\C}
=\cdots
\end{equation*}
and the chain of null spaces
\begin{equation*}
\set{\zero}
\subset\set{\colvec{0 \\ 0 \\ r}\suchthat r\in \C}
\subset\set{\colvec{0 \\ q \\ r}\suchthat q,r\in \C}
=\cdots
\end{equation*}
each has length two.
The generalized spaces are the final ones shown above in each chain.
\end{exparts}
\end{answer}
\item
Prove that function composition is associative
\( \composed{(\composed{t}{t})}{t}=\composed{t}{(\composed{t}{t})} \)
and so we can write $t^3$ without specifying a grouping.
\begin{answer}
Each maps \( x\mapsto t(t(t(x))) \).
\end{answer}
\item \label{exer:PropSubspStrictLowerDimen}
Check that a subspace must be of dimension less than or equal to the
dimension of its superspace.
Check that if the subspace is proper (the subspace does not equal the
superspace) then the dimension is strictly less.
\textit{(This is used in the proof of
\nearbylemma{le:RangeAndNullChains}.)}
\begin{answer}
Recall that if $W$ is a subspace of $V$ then we can enlarge
any basis $B_W$ for $W$
to make a basis $B_V$ for $V$.
From this the first sentence is immediate.
The second sentence is also not hard:~$W$ is the span of $B_W$ and
if $W$ is a proper subspace then $V$ is not the span of $B_W$, and
so $B_V$ must have at least one vector more than does $B_W$.
\end{answer}
\recommended\item
Prove that the generalized range space $\genrangespace{t}$ is the
entire space, and the generalized null space $\gennullspace{t}$ is trivial,
if the transformation $t$ is nonsingular.
Is this `only if' also?
\begin{answer}
It is both `if' and `only if'.
A linear map is nonsingular
if and only if it preserves dimension, that is, if the dimension of
its range equals the dimension of its domain.
With a transformation $\map{t}{V}{V}$ that means that
the map is nonsingular if and only if it is onto:
$\rangespace{t}=V$ (and thus $\rangespace{t^2}=V$, etc).
\end{answer}
\item \label{exer:RangeAndNullChains}
Verify the null space half of \nearbylemma{le:RangeAndNullChains}.
\begin{answer}
The null spaces form chains because
because if $\vec{v}\in\nullspace{t^j}$ then $t^j(\vec{v})=\zero$
and $t^{j+1}(\vec{v})=t(\,t^j(\vec{v})\,)=t(\zero)=\zero$ and
so $\vec{v}\in\nullspace{t^{j+1}}$.
Now,
the ``further'' property for null spaces follows from that fact
that it holds for range spaces, along with the prior exercise.
Because the dimension of $\rangespace{t^j}$ plus the dimension of
$\nullspace{t^j}$ equals the dimension~$n$ of the starting space~$V$,
when the dimensions of the range spaces stop decreasing, so do the
dimensions of the null spaces.
The prior exercise shows that from this point~$k$ on,
the containments in the chain are not proper\Dash the null spaces
are equal.
\end{answer}
\recommended\item
Give an example of a transformation on a three
dimensional space whose range has dimension two.
What is its null space?
Iterate your example until the range space and null space stabilize.
\begin{answer}
(Many examples are correct but here is one.)
An example is the shift operator on triples of reals
\( (x,y,z)\mapsto (0,x,y) \).
The null space is all triples that start with two zeros.
The map stabilizes after three iterations.
\end{answer}
\item
Show that the range space and null space of a linear transformation
need not be disjoint.
Are they ever disjoint?
\begin{answer}
The differentiation operator
\( \map{d/dx}{\polyspace_1}{\polyspace_1} \) has the same
range space as null space.
For an example of where they are disjoint\Dash
except for the zero vector\Dash consider an identity map,
or any nonsingular map.
\end{answer}
\end{exercises}
\subsectionoptional{Strings}
\index{nilpotent|(}
\noindent\textit{This requires material from the
optional Combining Subspaces subsection.}
The prior subsection shows that as \( j \) increases
the dimensions of the $\rangespace{t^j}$'s fall while
the dimensions of the $\nullspace{t^j}$'s rise,
in such a way that this rank and nullity split between them
the dimension of $V$.
Can we say more;
do the two split a basis\Dash is
\( V=\rangespace{t^j}\directsum\nullspace{t^j} \)?
The answer is yes for the smallest power $j=0$ since
\( V=\rangespace{t^0}\directsum\nullspace{t^0}=V\directsum\set{\zero} \).
The answer is also yes at the other extreme.
\begin{lemma} \label{lem:RestONeToOne}
For any linear \( \map{t}{V}{V} \)
the function \( \map{t}{\genrangespace{t}}{\genrangespace{t}} \)
is one-to-one.
\end{lemma}
\begin{proof}
Let the dimension of $V$ be $n$.
Because \( \rangespace{t^n}=\rangespace{t^{n+1}} \),
the map \( \map{t}{\genrangespace{t}}{\genrangespace{t}} \) is
a dimension-preserving homomorphism.
Therefore, by Theorem~Two.II.\ref{th:OOHomoEquivalence} it is one-to-one.
\end{proof}
\begin{corollary} \label{GenRngNullDirSumToSp}
Where \( \map{t}{V}{V} \) is a linear transformation,
the space is the direct sum
\( V=\genrangespace{t}\directsum\gennullspace{t} \).
That is, both (1)~\( \dim(V)=\dim(\genrangespace{t})+\dim(\gennullspace{t}) \)
and (2)~\( \genrangespace{t}\intersection\gennullspace{t}=\set{\zero} \).
\end{corollary}
\begin{proof}
Let the dimension of $V$ be $n$.
We will verify the second sentence, which is equivalent to the first.
Clause~(1) is true because any transformation satisfies that
its rank plus its nullity
equals the dimension of the space,
and in particular this holds for the transformation $t^n$.
For clause~(2), assume that
\( \vec{v}\in\genrangespace{t}\intersection\gennullspace{t} \)
% =\rangespace{t^n}\intersection\nullspace{t^n} \)
to prove that $\vec{v}=\zero$.
Because \( \vec{v} \) is in the generalized null space, \( t^n(\vec{v})=\zero \).
On the other hand, by the lemma
\( \map{t}{\genrangespace{t}}{\genrangespace{t}} \)
is one-to-one and
a composition of one-to-one maps is one-to-one, so
\( \map{t^n}{\genrangespace{t}}{\genrangespace{t}} \) is one-to-one.
Only \( \zero \) is sent by a one-to-one linear map to
\( \zero \) so the fact that \( t^n(\vec{v})=\zero \) implies that
\( \vec{v}=\zero \).
\end{proof}
\begin{remark}
Technically there is a difference between the map $\map{t}{V}{V}$ and
the map on the subspace \( \map{t}{\genrangespace{t}}{\genrangespace{t}} \)
if the generalized range space is not equal to $V$, because the domains are
different.
But the difference is small because
the second is the
restriction % \index{restriction}\index{map!restriction}\appendrefs{map restrictions}\spacefactor=1000 %
of the first to
$\genrangespace{t}$.
\end{remark}
For powers between $j=0$ and~$j=n$,
the space $V$ might not be the direct sum of
$\rangespace{t^j}$ and $\nullspace{t^j}$.
The next example shows that the two can have a nontrivial intersection.
\begin{example} \label{FirstNilMap}
Consider the transformation of \( \C^2 \)
defined by this action on the elements of the standard basis.
\begin{equation*}
\colvec[r]{1 \\ 0}
\mapsunder{n}
\colvec[r]{0 \\ 1}
\quad
\colvec[r]{0 \\ 1}
\mapsunder{n}
\colvec[r]{0 \\ 0}
\qquad
N=\rep{n}{\stdbasis_2,\stdbasis_2}=\begin{mat}[r]
0 &0 \\
1 &0
\end{mat}
\end{equation*}
This is a \definend{shift map}\index{shift}\index{transformation!shift}
and is clearly nilpotent of index two.
\begin{equation*}
\colvec{x \\ y}\mapsto \colvec{0 \\ x}
\end{equation*}
Another way to depict this map's action is with a
\definend{string}.\index{string!of basis vectors}
\begin{equation*}
\begin{strings}{ccccc}
\vec{e}_1 &\mapsto &\vec{e}_2 &\mapsto &\zero
\end{strings}
\end{equation*}
The vector
\begin{equation*}
\vec{e}_2=\colvec[r]{0 \\ 1}
\end{equation*}
is in both the range space and null space.
\end{example}
\begin{example} \label{NilIndexFourOnCFour}
A map \( \map{\hat{n}}{\C^4}{\C^4} \)
whose action on \( \stdbasis_4 \) is given by
the string
\begin{equation*}
\begin{strings}{ccccccccc}
\vec{e}_1 &\mapsto &\vec{e}_2
&\mapsto &\vec{e}_3
&\mapsto &\vec{e}_4
&\mapsto &\zero
\end{strings}
\end{equation*}
has
\( \rangespace{\hat{n}}\intersection\nullspace{\hat{n}} \) equal to the
span \( \spanof{\set{\vec{e}_4}} \),
has \( \rangespace{\hat{n}^2}\intersection\nullspace{\hat{n}^2}=
\spanof{\set{\vec{e}_3,\vec{e}_4}} \),
and has \( \rangespace{\hat{n}^3}\intersection\nullspace{\hat{n}^3}=
\spanof{\set{\vec{e}_4}} \).
It is nilpotent of index four.
The matrix representation is all zeros except for
some subdiagonal ones.
\begin{equation*}
\hat{N}=\rep{\hat{n}}{\stdbasis_4,\stdbasis_4}
=\begin{mat}[r]
0 &0 &0 &0 \\
1 &0 &0 &0 \\
0 &1 &0 &0 \\
0 &0 &1 &0 \
\end{mat}
\end{equation*}
\end{example}
\begin{example} \label{ThirdNilMap}
Transformations can act via more than one string.
A transformation \( t \) acting on a basis
\( B=\sequence{\vec{\beta}_1,\dots,\vec{\beta}_5} \) by
\begin{equation*}
\begin{strings}{ccccccc}
\vec{\beta}_1 &\mapsto &\vec{\beta}_2 &\mapsto &\vec{\beta}_3
&\mapsto &\zero \\
\vec{\beta}_4 &\mapsto &\vec{\beta}_5 &\mapsto &\zero
\end{strings}
\end{equation*}
is represented by a matrix that is all zeros except for blocks
of subdiagonal ones
\begin{equation*}
\rep{t}{B,B}=
\begin{pmat}{rrr|rr}
0 &0 &0 &0 &0 \\
1 &0 &0 &0 &0 \\
0 &1 &0 &0 &0 \\ \hline
0 &0 &0 &0 &0 \\
0 &0 &0 &1 &0
\end{pmat}
\end{equation*}
(the lines just visually organize the blocks).
\end{example}
In those examples all vectors are eventually transformed to
zero.
\begin{definition} \label{def:nilpotent} \index{nilpotent!definition}
A \definend{nilpotent} transformation\index{transformation!nilpotent}%
\index{nilpotent!transformation}
is one with a power that is the zero map.
A \definend{nilpotent matrix}\index{matrix!nilpotent}%
\index{nilpotent!matrix}
is one with a power that is the zero matrix.
In either case, the least such power is the \definend{index of nilpotency}.%
\index{nilpotency, index of}\index{index of nilpotency}
\end{definition}
\begin{example}
In \nearbyexample{FirstNilMap} the index of nilpotency is two.
In \nearbyexample{NilIndexFourOnCFour} it is four.
In \nearbyexample{ThirdNilMap} it is three.
\end{example}
\begin{example}
The differentiation map \( \map{d/dx}{\polyspace_2}{\polyspace_2} \)
is nilpotent of index three since the third derivative of any quadratic
polynomial is zero.
This map's action is described by the string
$x^2\mapsto 2x\mapsto 2\mapsto 0$
and taking the basis \( B=\sequence{x^2,2x,2} \)
gives this representation.
\begin{equation*}
\rep{d/dx}{B,B}=
\begin{mat}[r]
0 &0 &0 \\
1 &0 &0 \\
0 &1 &0
\end{mat}
\end{equation*}
\end{example}
Not all nilpotent matrices are all zeros except for blocks of
subdiagonal ones.
\begin{example} \label{ex:NilMatNotCanon}
With the matrix $\hat{N}$ from \nearbyexample{NilIndexFourOnCFour},
and this four-vector basis
\begin{equation*}
D=\sequence{\colvec[r]{1 \\ 0 \\ 1 \\ 0},
\colvec[r]{0 \\ 2 \\ 1 \\ 0},
\colvec[r]{1 \\ 1 \\ 1 \\ 0},
\colvec[r]{0 \\ 0 \\ 0 \\ 1}}
\end{equation*}
a change of basis operation
produces this representation with respect to \( D,D \).
\begin{equation*}
\begin{mat}[r]
1 &0 &1 &0 \\
0 &2 &1 &0 \\
1 &1 &1 &0 \\
0 &0 &0 &1
\end{mat}
\begin{mat}[r]
0 &0 &0 &0 \\
1 &0 &0 &0 \\
0 &1 &0 &0 \\
0 &0 &1 &0
\end{mat}
\begin{mat}[r]
1 &0 &1 &0 \\
0 &2 &1 &0 \\
1 &1 &1 &0 \\
0 &0 &0 &1
\end{mat}^{-1}\!\!
=
\begin{mat}[r]
-1 &0 &1 &0 \\
-3 &-2 &5 &0 \\
-2 &-1 &3 &0 \\
2 &1 &-2 &0
\end{mat}
\end{equation*}
The new matrix is nilpotent; its fourth power
is the zero matrix.
We could verify this with a tedious computation or we can
instead just observe that
it is nilpotent since its fourth power
is similar to \( \hat{N}^4 \), the zero matrix,
and the only matrix similar to the zero matrix is itself.
\begin{equation*}
(P\hat{N}P^{-1})^4
=P\hat{N}P^{-1}\cdot P\hat{N}P^{-1}\cdot P\hat{N}P^{-1}\cdot P\hat{N}P^{-1}
=P\hat{N}^4P^{-1}
\end{equation*}
\end{example}
The goal of this subsection is to show
that the prior example is prototypical
in that every nilpotent matrix is similar to one that is all
zeros except for blocks of subdiagonal ones.
\begin{definition}
Let \( t \) be a nilpotent transformation on \( V \).
A \definend{\( t \)-string of length $k$ generated by
\( \vec{v}\in V \)}\index{string}
is a sequence
\( \sequence{\vec{v},t(\vec{v}),\ldots,t^{k-1}(\vec{v})} \).
A \definend{\( t \)-string basis}\index{basis!string}\index{string!basis}
is a basis that is a concatenation of \( t \)-strings.
\end{definition}
\begin{example}
Consider differentiation \( \map{d/dx}{\polyspace_2}{\polyspace_2} \).
The sequence
\( \sequence{x^2, 2x, 2, 0} \)
is a \( d/dx \)-string of length~\( 4 \).
The sequence
\( \sequence{x^2, 2x, 2} \)
is a \( d/dx \)-string of length~\( 3 \)
that is a basis for \( \polyspace_2\).
\end{example}
Note that the strings cannot form a basis under concatenation
if they are not disjoint because a basis cannot have a repeated vector.
\begin{example}
In \nearbyexample{ThirdNilMap}, we can concatenate the $t$-strings
$\sequence{\vec{\beta}_1,\vec{\beta}_2,\vec{\beta}_3}$ and
$\sequence{\vec{\beta}_4,\vec{\beta}_5}$
to make a basis for the domain of $t$.
\end{example}
\begin{lemma} \label{le:LongestTowerIsIndex}
If a space has a \( t \)-string basis then the index of nilpotency of $t$
is the length of the longest string in that basis.
\end{lemma}
\begin{proof}
Let the space have a basis of $t$-strings and let $t$'s index of
nilpotency be~$k$.
We cannot have that the longest string in that basis is longer than
$t$'s index of nilpotency because
\( t^k \) sends any vector, including the vector starting the longest
string, to \( \zero \).
Therefore instead suppose that the space has a $t$-string basis~$B$ where
all of the strings are shorter than length~\( k \).
Because $t$ has index~$k$, there is a vector \( \vec{v} \)
such that \( t^{k-1}(\vec{v})\neq\zero \).
Represent $\vec{v}$ as a linear combination of elements from~$B$
and apply \( t^{k-1} \).
We are supposing that \( t^{k-1} \) maps each element of~$B$ to \( \zero \),
and therefore maps each term in the linear combination to $\zero$,
but also that it does not map \( \vec{v} \) to \( \zero \).
That is a contradiction.
\end{proof}
We shall show that each
nilpotent map has an associated string basis, a basis of disjoint strings.
% Then our goal theorem, that every
% nilpotent matrix is similar to one that is
% all zeros except for blocks of subdiagonal ones, is immediate,
%as in \nearbyexample{ThirdNilMap}.
To see the main idea of the argument, imagine that
we want to construct a counterexample, a map that is nilpotent but
without an associated disjoint string basis.
We might think to make something like
the map \( \map{t}{\C^5}{\C^5} \) with this action.
\begin{center}
\begin{minipage}{1in}
\setlength{\unitlength}{1pt}
$\begin{strings}{ccccc}
\begin{picture}(4,15)
\put(0,14){$\vec{e}_1$}
\put(0,-12){$\vec{e}_2$}
\end{picture}
&\begin{picture}(8,10)
\put(0,8){\rotatebox{-30}{$\mapsto$}}%
\put(0,-8){\rotatebox{30}{$\mapsto$}}
\end{picture}
&\vec{e}_3 &\mapsto &\zero \\[4ex]
\vec{e}_4 &\mapsto &\vec{e}_5 &\mapsto &\zero
\end{strings}$
\end{minipage}
\hspace*{3em}
$\rep{t}{\stdbasis_5,\stdbasis_5}=
\begin{mat}[r]
0 &0 &0 &0 &0 \\
0 &0 &0 &0 &0 \\
1 &1 &0 &0 &0 \\
0 &0 &0 &0 &0 \\
0 &0 &0 &1 &0
\end{mat}$
\end{center}
But, the fact that the shown basis isn't disjoint doesn't mean that there
isn't another basis that consists of disjoint strings.
To produce such a basis for this map
we will first find the number and lengths of its strings.
Observer that $t$'s index of nilpotency is two.
\nearbylemma{le:LongestTowerIsIndex} says that
at least one string in a disjoint string basis has length two.
There are five basis elements so if there is a disjoint string basis then
the map must act in one of these ways.
\begin{equation*}
\begin{strings}{ccccc}
\vec{\beta}_1 &\mapsto &\vec{\beta}_2 &\mapsto &\zero \\
\vec{\beta}_3 &\mapsto &\vec{\beta}_4 &\mapsto &\zero \\
\vec{\beta}_5 &\mapsto &\zero
\end{strings}
\hspace*{3em}
\begin{strings}{ccccc}
\vec{\beta}_1 &\mapsto &\vec{\beta}_2 &\mapsto &\zero \\
\vec{\beta}_3 &\mapsto &\zero \\
\vec{\beta}_4 &\mapsto &\zero \\
\vec{\beta}_5 &\mapsto &\zero
\end{strings}
\end{equation*}
Now, the key point.
A transformation with the left-hand action has a
null space of dimension three since that's how many basis vectors are
mapped to zero.
A transformation with the right-hand action has a null space of
dimension four.
Wit the matrix representation above we can determine which of the
two possible shapes is right.
\begin{equation*}
\nullspace{t}=
\set{\colvec{x \\ -x \\ z \\ 0 \\ r}\suchthat x,z,r\in\C }
\end{equation*}
This is three-dimensional,
meaning that of the two disjoint string basis forms above, \( t \)'s
basis has the left-hand one.
To produce a string basis for~$t$, first
pick \( \vec{\beta}_2 \) and \( \vec{\beta}_4 \) from
\( \rangespace{t}\intersection\nullspace{t} \).
\begin{equation*}
\vec{\beta}_2=\colvec[r]{0 \\ 0 \\ 1 \\ 0 \\ 0}\qquad
\vec{\beta}_4=\colvec[r]{0 \\ 0 \\ 0 \\ 0 \\ 1}
\end{equation*}
(Other choices are possible, just be sure that the set
\( \set{\vec{\beta}_2,\vec{\beta}_4} \) is linearly independent.)
For \( \vec{\beta}_5 \) pick a vector from \( \nullspace{t} \)
that is not in the span of \( \set{ \vec{\beta}_2,\vec{\beta}_4 } \).
\begin{equation*}
\vec{\beta}_5=\colvec[r]{1 \\ -1 \\ 0 \\ 0 \\ 0}
\end{equation*}
Finally, take \( \vec{\beta}_1 \) and \( \vec{\beta}_3 \) such that
\( t(\vec{\beta}_1)=\vec{\beta}_2 \) and
\( t(\vec{\beta}_3)=\vec{\beta}_4 \).
\begin{equation*}
\vec{\beta}_1=\colvec[r]{0 \\ 1 \\ 0 \\ 0 \\ 0}\qquad
\vec{\beta}_3=\colvec[r]{0 \\ 0 \\ 0 \\ 1 \\ 0}
\end{equation*}
Therefore, we have a string basis
\( B=\sequence{\vec{\beta}_1,\ldots,\vec{\beta}_5} \)
and with respect to that basis
the matrix of $t$ has blocks of subdiagonal~$1$'s.
\begin{equation*}
\rep{t}{B,B}=
\begin{pmat}{rr|rr|r}
0 &0 &0 &0 &0 \\
1 &0 &0 &0 &0 \\ \hline
0 &0 &0 &0 &0 \\
0 &0 &1 &0 &0 \\ \hline
0 &0 &0 &0 &0
\end{pmat}
\end{equation*}
\begin{theorem}
\label{th:NilMapHasStrBas}
Any nilpotent transformation $t$ is associated with a \( t \)-string basis.
While the basis is not unique, the number
and the length of the strings is determined by \( t \).
\end{theorem}
This illustrates the proof, which describes three kinds of
basis vectors (shown in squares if they are in the
null space and in circles if they are not).
\begin{equation*}
\begin{strings}{ccccccccccccccccccc}
\digitincirc{3}
&\mapsto &\digitincirc{1} &\mapsto
&\cdots & & & & & & & &\cdots
&\mapsto &\digitincirc{1}
&\mapsto &\digitinsq{1} &\mapsto &\zero \\[.75ex]
\digitincirc{3}
&\mapsto &\digitincirc{1} &\mapsto
&\cdots & & & & & & & &\cdots
&\mapsto &\digitincirc{1}
&\mapsto &\digitinsq{1} &\mapsto &\zero \\[.75ex]
&\smash{\vdotswithin{\mapsto}} \\
\digitincirc{3}
&\mapsto &\digitincirc{1} &\mapsto
&\cdots &
&\mapsto &\digitincirc{1}
&\mapsto &\digitinsq{1} &\mapsto &\zero \\[.75ex]
\digitinsq{2} &\mapsto &\zero \\[.75ex]
&\smash{\vdotswithin{\mapsto}} \\
\digitinsq{2} &\mapsto &\zero
\end{strings}
\end{equation*}
\begin{proof}
Fix a vector space $V$.
We will argue by induction on the index of nilpotency.
If the map $\map{t}{V}{V}$
has index of nilpotency~\( 1 \) then it is the zero map and any basis
is a string basis $\vec{\beta}_1\mapsto\zero$, \ldots,
$\vec{\beta}_n\mapsto\zero$.
For the inductive step, assume that the theorem holds for any transformation
$\map{t}{V}{V}$
with an index of nilpotency between $1$ and~\( k-1 \) (with $k>1$)
and consider the index~$k$ case.
Observe that the restriction of $t$ to
the range space
\( \map{t}{\rangespace{t}}{\rangespace{t}} \)
is also nilpotent, of index \( k-1 \).
Apply the inductive hypothesis to get a string basis for
\( \rangespace{t} \),
where the number and length of the strings