-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathleontief.tex
563 lines (549 loc) · 24 KB
/
leontief.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
% Chapter 1, Topic from _Linear Algebra_ Jim Hefferon
% http://joshua.smcvt.edu/linalg.html
% 2001-Jun-09
\topic{Input-Output Analysis}
\index{Input-Output Analysis|(}
An economy is an immensely complicated network of interdependence.
Changes in one part can ripple out to affect other parts.
Economists have struggled to be able to describe, and to make
predictions about, such a complicated object.
Mathematical models using systems of linear equations
are a key tool.
One example is Input-Output Analysis, pioneered by
W.~Leontief,\index{Leontief, W.}
who won the 1973 Nobel Prize in Economics.
Consider an economy with many parts, two of which are the steel industry and
the auto industry.
These two interact tightly
as they work to meet the demand for their product
from other parts of the economy, from users external to the steel and
auto sectors.
For instance, should the external demand for autos go up, that would
increase in the auto industry's usage of steel.
Or should the external demand for steel fall, then it would lower
steel's purchase of trucks.
The model that
we consider here takes in the external demands
and predicts how the two interact to meet those demands.
We start with production and consumption statistics.
(These numbers, giving dollar values in
millions, are from
\cite{Leontief1965} describing the 1958 U.S.\ economy.
Today's statistics would be different because of
inflation and because of technical changes in the industries.)
\begin{center}
\begin{tabular}{r|rrrr}
\multicolumn{1}{c}{\ } %put the | in the right place
&\multicolumn{1}{r}{\begin{tabular}[b]{@{}c@{}}
\textit{used by} \\[-.65ex] \textit{steel}
\end{tabular}}
&\multicolumn{1}{r}{\begin{tabular}[b]{@{}c@{}}
\textit{used by} \\[-.65ex] \textit{auto}
\end{tabular}}
&\multicolumn{1}{r}{\begin{tabular}[b]{@{}c@{}}
\textit{used by} \\[-.65ex] \textit{others}
\end{tabular}}
&\textit{total} \\
\cline{2-5}
\begin{tabular}{r} \textit{value of} \\[-.65ex] \textit{steel} \end{tabular}
&$5\,395$ &$2\,664$ & &$25\,448$ \\
\begin{tabular}{r} \textit{value of} \\[-.65ex] \textit{auto} \end{tabular}
&$48$ &$9\,030$ & &$30\,346$
\end{tabular}
\end{center}
For instance, the dollar value of steel used by the auto industry in this
year is $2,664$ million.
Note that industries may consume some of their own output.
We can fill in the external demands.
This year's value of the steel used by others is $17,389$
and the external value of autos is $21,268$.
With that we have a complete description of
how auto and steel interact to meet their demands.
Now imagine that the external demand for steel has recently been going up by
$200$ per year and so we estimate that next year it will be $17,589$.
We also estimate that next year's
external demand for autos will be down $25$ to $21,243$.
We wish to predict next year's total outputs.
That prediction isn't as simple as adding $200$ to this year's steel
total and subtracting $25$ from this year's auto total.
For one thing, a rise in steel will cause
that industry to have an increased demand for autos, which will mitigate
the loss in external demand for autos.
On the other hand, the drop in external demand for autos will cause
the auto industry to use less steel and so lessen somewhat the
upswing in steel's business.
In short, these two industries form a system.
We must predict where the system as a whole will settle.
Here are the equations.
\begin{align*}
\text{next year's production of steel}
&=\text{next year's use of steel by steel} \\[-.8ex]
&\quad\hbox{}+\text{next year's use of steel by auto} \\[-.8ex]
&\quad\hbox{}+\text{next year's use of steel by others} \\
\text{next year's production of autos}
&=\text{next year's use of autos by steel} \\[-.8ex]
&\quad\hbox{}+\text{next year's use of autos by auto} \\[-.8ex]
&\quad\hbox{}+\text{next year's use of autos by others}
\end{align*}
For the left side let
$s$ be next years total production of steel and
let $a$ be next year's total output of autos.
For the right side, as discussed above,
our external demand estimates are $17,589$ and $21,243$.
For next year's use of steel by steel, note that this year the
steel industry used $5,395$ units of steel input to produce $25,448$ units of
steel output.
So next year, when the steel industry will produce $s$ units out,
we guess that doing so will take $s\cdot (5\,395)/(25\,448)$
units of steel input\Dash this is simply the assumption that input is
proportional to output.
(We are assuming that the ratio of input to output remains constant over time;
in practice, models may try to take account of trends of change in the
ratios.)
Next year's use of steel by the auto industry is similar.
This year the auto industry uses $2,664$ units of steel input to produce
$30,346$ units of auto output.
So next year, when the auto industry's total output is $a$, we expect it to
consume $a\cdot (2\,664)/(30\,346)$ units of steel.
Filling in the other equation in the same way gives this system of linear
equations.
\begin{equation*}
\begin{linsys}{3}
(5\,395/25\,448)\cdot s
&+ &(2\,664/30\,346)\cdot a &+ &17\,589
&= &s \\
(48/25\,448)\cdot s
&+ &(9\,030/30\,346)\cdot a &+ &21\,243
&= &a
\end{linsys}
\end{equation*}
Moving the variables to one side and the constants to the other
\begin{equation*}
\begin{linsys}{2}
(20\,053/25\,448)s &- &(2\,664/30\,346)a &= &17\,589 \\
-(48/25\,448)s &+ &(21\,316/30\,346)a &= &21\,243
\end{linsys}
\end{equation*}
and applying Gauss's Method or using \textit{Sage}, as here
\begin{lstlisting}
sage: var('a,s')
(a, s)
sage: eqns=[(20053/25448)*s - (2664/30346)*a == 17589,
....: (-48/25448)*s + (21316/30346)*a == 21243]
sage: solve(eqns, s, a)
[[s == (2745320544312/106830469), a == (6476293881123/213660938)]]
sage: n(2745320544312/106830469)
25697.9171767186
sage: n(6476293881123/213660938)
30311.0804517904
\end{lstlisting}
gives our prediction:
$s=25,698$ and $a=30,311$.
Above, we discussed that the prediction of next year's
totals isn't as simple as adding $200$ to last year's steel total and
subtracting $25$ from last year's auto total.
Comparing these predictions
to the numbers for the current year
shows that the total production of the steel industry should rise by~$250$
while
auto's total drops by $35$.
The increase in external demand for steel causes an increase in
internal demand by the steel industry, which is lessened somewhat by
the drop in autos, but results in a total that is more than
$200$ higher.
Similarly, auto's total drops more than~$25$ despite the help that
it gets from steel.
One of the advantages of having a mathematical model is that we can
ask ``What if \ldots?'' questions.
For instance, we can ask,
``What if our estimates for next year's external demands are somewhat off?''
To try to understand how much the model's predictions change in
reaction to changes in our estimates, we can revise the estimate of
next year's external steel demand from $17,589$ down to
$17,489$, while keeping the assumption of next year's external demand for
autos fixed at $21,243$.
The resulting system
\begin{equation*}
\begin{linsys}{2}
(20\,053/25\,448)s &- &(2\,664/30\,346)a &= &17\,489 \\
-(48/25\,448)s &+ &(21\,316/30\,346)a &= &21\,243
\end{linsys}
\end{equation*}
gives $s=25,571$ and $a=30,311$.
% sage: var('a,s')
% (a, s)
% sage: eqns=[(20053/25448)*s - (2664/30346)*a == 17489,
% ....: (-48/25448)*s + (21316/30346)*a == 21243]
% sage: solve(eqns, s, a)
% [[s == (2731759305112/106830469), a == (6476221050723/213660938)]]
% sage: n(2731759305112/106830469)
% 25570.9754968126
% sage: n(6476221050723/213660938)
% 30310.7395827449
This is \definend{sensitivity analysis}.
We are seeing how sensitive the predictions of our model are to the
accuracy of the assumptions.
Naturally, we can consider larger models that detail the interactions
among more sectors of an economy;
these models are typically solved on a computer.
Naturally also, a single model does not suit every case and
assuring that the assumptions underlying a model
are reasonable for a particular prediction requires the judgments of experts.
With those caveats
however, this model has proven in practice to be a useful and accurate tool for
economic analysis.
For further reading, try \cite{Leontief1951} and \cite{Leontief1965}.
\begin{exercises}
\item
With the steel-auto system given above, estimate next year's
total productions in these cases.
\begin{exparts}
\partsitem Next year's external demands are up $200$ from this
year for steel and are unchanged for autos.
\partsitem Next year's external demands are up $100$ for steel and
are up $200$ for autos.
\partsitem Next year's external demands are up $200$ for steel and
are up $200$ for autos.
\end{exparts}
\begin{answer}
These answers are from \textit{Octave}.
\begin{exparts}
\partsitem \Sage{} gets $s\approx 25\,952$ and $a\approx 30\,312$.
\begin{lstlisting}
sage: var('s,a')
(s, a)
sage: system = [(20053/25448)*s - (2664/30346)*a == 17789,
....: -(48/25448)*s + (21316/30346)*a == 21243]
sage: solve(system, s,a)
[[s == (2772443022712/106830469), a == (6476439541923/213660938)]]
sage: n(2772443022712/106830469), n(6476439541923/213660938)
(25951.8005365305, 30311.7621898814)
\end{lstlisting}
\partsitem \Sage{} gets $s\approx 25\,857$ and $a\approx 30\,596$.
\begin{lstlisting}
sage: system = [(20053/25448)*s - (2664/30346)*a == 17689,
....: -(48/25448)*s + (21316/30346)*a == 21443]
sage: solve(system, s,a)
[[s == (2762271457112/106830469), a == (6537219545323/213660938)]]
sage: n(2762271457112/106830469), n(6537219545323/213660938)
(25856.5883213711, 30596.2316112410)
\end{lstlisting}
\partsitem \Sage{} gets $s\approx 25\,984$ and $a\approx 30\,597$.
\begin{lstlisting}
sage: system = [(20053/25448)*s - (2664/30346)*a == 17789,
....: -(48/25448)*s + (21316/30346)*a == 21443]
sage: solve(system, s,a)
[[s == (2775832696312/106830469), a == (6537292375723/213660938)]]
sage: n(2775832696312/106830469), n(6537292375723/213660938)
(25983.5300012771, 30596.5724802865)
\end{lstlisting}
\end{exparts}
\end{answer}
\item
For the steel-auto system,
with the external demand estimates of $17,589$ and $21,243$
discussed above, what will be the value of steel used by steel,
the value of steel used by auto, etc.?
\begin{answer}
This \textit{Sage} session
\begin{lstlisting}
sage: var('a,s')
(a, s)
sage: eqns=[(20053/25448)*s - (2664/30346)*a == 17589,
....: (-48/25448)*s + (21316/30346)*a == 21243]
sage: solve(eqns, s, a)
[[s == (2745320544312/106830469), a == (6476293881123/213660938)]]
sage: s_by_s = (5395/25448)*2745320544312/106830469
sage: s_by_s
582010544505/106830469
sage: n(s_by_s)
5447.98267716114
sage: s_by_a = (2664/30346)*6476293881123/213660938
sage: n(s_by_a)
2660.93449955743
sage: a_by_s = (48/25448)*2745320544312/106830469
sage: n(a_by_s)
48.4713936058822
sage: a_by_a = (9030/30346)*6476293881123/213660938
sage: n(a_by_a)
9019.60905818451
\end{lstlisting}
gives this table.
\begin{center}
\begin{tabular}{r|rrrr}
\multicolumn{1}{c}{\ } %put the | in the right place
&\multicolumn{1}{r}{\begin{tabular}[b]{@{}c@{}}
\textit{used by} \\[-.65ex] \textit{steel}
\end{tabular}}
&\multicolumn{1}{r}{\begin{tabular}[b]{@{}c@{}}
\textit{used by} \\[-.65ex] \textit{auto}
\end{tabular}}
&\multicolumn{1}{r}{\begin{tabular}[b]{@{}c@{}}
\textit{used by} \\[-.65ex] \textit{others}
\end{tabular}}
&\textit{total} \\
\cline{2-5}
\begin{tabular}{r} \textit{value of} \\[-.65ex] \textit{steel} \end{tabular}
&$5\,448$ &$2\,661$ &$17\,589$ &$25\,698$ \\
\begin{tabular}{r} \textit{value of} \\[-.65ex] \textit{auto} \end{tabular}
&$48$ &$9\,020$ &$21\,243$ &$30\,311$
\end{tabular}
\end{center}
For comparison here is the original table.
\begin{center}
\begin{tabular}{r|rrrr}
\multicolumn{1}{c}{\ } %put the | in the right place
&\multicolumn{1}{r}{\begin{tabular}[b]{@{}c@{}}
\textit{used by} \\[-.65ex] \textit{steel}
\end{tabular}}
&\multicolumn{1}{r}{\begin{tabular}[b]{@{}c@{}}
\textit{used by} \\[-.65ex] \textit{auto}
\end{tabular}}
&\multicolumn{1}{r}{\begin{tabular}[b]{@{}c@{}}
\textit{used by} \\[-.65ex] \textit{others}
\end{tabular}}
&\textit{total} \\
\cline{2-5}
\begin{tabular}{r} \textit{value of} \\[-.65ex] \textit{steel} \end{tabular}
&$5\,395$ &$2\,664$ &$17\,389$ &$25\,448$ \\
\begin{tabular}{r} \textit{value of} \\[-.65ex] \textit{auto} \end{tabular}
&$48$ &$9\,030$ &$21\,268$ &$30\,346$
\end{tabular}
\end{center}
\end{answer}
\item
In the steel-auto system, the ratio for the use of steel by the auto
industry is $2,664/30,346$, about $0.0878$.
Imagine that a new process for making autos reduces this
ratio to $.0500$.
\begin{exparts}
\partsitem How will the predictions for next year's total
productions change compared to the first example discussed
above (i.e., taking next year's external demands to be
$17,589$ for steel and $21,243$ for autos)?
\partsitem Predict next year's totals if, in addition,
the external demand for
autos rises to be $21,500$ because the new cars are cheaper.
\end{exparts}
\begin{answer}
\begin{exparts}
\partsitem \Sage{} gives $s=24,244$, $a=30,307$.
\begin{lstlisting}
sage: var('s,a')
(s, a)
sage: system = [(20053/25448)*s - 0.0500*a == 17589,
....: -(48/25448)*s + (21316/30346)*a == 21243]
sage: solve(system, s,a)
[[s == (12951731858499/534221147), a == (32381469405615/1068442294)]]
sage: n(12951731858499/534221147), n(32381469405615/1068442294)
(24244.1392131918, 30307.1767071166)
\end{lstlisting}
\partsitem Sage gives $s=24,267$, $a=30,673$.
\begin{lstlisting}
sage: system = [(20053/25448)*s - 0.0500*a == 17589,
....: -(48/25448)*s + (21316/30346)*a == 21500]
sage: solve(system, s,a)
[[s == (12964136043940/534221147), a == (16386224431390/534221147)]]
sage: n(12964136043940/534221147), n(16386224431390/534221147)
(24267.3584090448, 30673.1107957993)
\end{lstlisting}
\end{exparts}
\end{answer}
\item
This table gives the numbers for the auto-steel system from
a different year, 1947 (see \cite{Leontief1951}).
The units here are billions of 1947 dollars.
\begin{center}
\begin{tabular}{r|rrrr}
\multicolumn{1}{c}{\ } % omit the |
&\multicolumn{1}{r}{\begin{tabular}[b]{@{}c@{}}
\textit{used by} \\[-.65ex] \textit{steel}
\end{tabular}}
&\multicolumn{1}{r}{\begin{tabular}[b]{@{}c@{}}
\textit{used by} \\[-.65ex] \textit{auto}
\end{tabular}}
&\multicolumn{1}{r}{\begin{tabular}[b]{@{}c@{}}
\textit{used by} \\[-.65ex] \textit{others}
\end{tabular}}
&\multicolumn{1}{r}{\textit{total}} \\ \cline{2-5}
\begin{tabular}{r} \textit{value of} \\[-.65ex]
\textit{steel}
\end{tabular}
&$6.90$ &$1.28$ & &$18.69$ \\
\begin{tabular}{r} \textit{value of} \\[-.65ex] \textit{autos}
\end{tabular}
&$0$ &$4.40$ & &$14.27$
\end{tabular}
\end{center}
\begin{exparts}
\partsitem Solve for total output if next year's external
demands are: steel's demand up $10$\% and auto's demand up
$15$\%.
\partsitem How do the ratios compare to those given above in the
discussion for the 1958 economy?
\partsitem Solve the 1947 equations with the 1958 external demands
(note the difference in units; a 1947 dollar buys about
what \$$1.30$ in 1958 dollars buys).
How far off are the predictions for total output?
\end{exparts}
\begin{answer}
\begin{exparts}
\partsitem
These are the equations.
\begin{equation*}
\begin{linsys}{2}
(11.79/18.69)s &- &(1.28/14.27)a &= &10.51 \\
-(0/18.69)s &+ &(9.87/14.27)a &= &9.87
\end{linsys}
\end{equation*}
\textit{Sage} gives this result (including an inital check).
\begin{lstlisting}
sage: var('a,s')
(a, s)
sage: eqns=[(11.79/18.69)*s - (1.28/14.27)*a == 10.51,
....: (-0)*s + (9.87/14.27)*a == 9.87]
sage: solve(eqns,s,a)
[[s == (1869/100), a == (1427/100)]]
sage: n(1869/100)
18.6900000000000
sage: n(1427/100)
14.2700000000000
sage: eqns=[(11.79/18.69)*s - (1.28/14.27)*a == 11.561,
....: (-0)*s + (9.87/14.27)*a == 11.3505]
sage: solve(eqns,s,a)
[[s == (8119559/393000), a == (32821/2000)]]
sage: n(8119559/393000)
20.6604554707379
sage: n(32821/2000)
16.4105000000000
\end{lstlisting}
\partsitem
These are the 1947 ratios, to three decimal places.
\begin{center}
\begin{tabular}{r|cc}
1947 &\textit{by steel} &\textit{by autos} \\ \hline
\textit{use of steel} &$(6.90/18.69)=0.369$ &$(1.28/14.27)=0.090$ \\
\textit{use of autos} &$(0/18.69)=0.00$ &$(4.40/14.27)=0.308$
\end{tabular}
\end{center}
These are the 1958 ratios.
\begin{center}
\begin{tabular}{r|cc}
1958 &\textit{by steel} &\textit{by autos} \\ \hline
\textit{use of steel} &$(5395/25448)=0.212$ &$(2664/30346)=0.088$ \\
\textit{use of autos} &$(48/25448)=0.002$ &$(9030/30346)=0.298$
\end{tabular}
\end{center}
\partsitem
The external demands in 1958 are $17.589$ and~$21.243$,
in billions of 1958 dollars.
In 1948 dollars those are $(17.589/1.3)=13.53$ and
$(21.243/1.3)=16.34$.
\textit{Sage} gives these numbers.
\begin{lstlisting}
sage: eqns=[(11.79/18.69)*s - (1.28/14.27)*a == 13.53,
....: (-0)*s + (9.87/14.27)*a == 16.34]
sage: solve(eqns,s,a)
[[s == (137466107/5541300), a == (1165859/49350)]]
sage: n(137466107/5541300)
24.8075554472777
sage: n(1165859/49350)
23.6242958459980
\end{lstlisting}
Converting back to 1958 dollars by multiplying by $1.3$ gives
$32.25$ and~$30.71$.
\end{exparts}
\end{answer}
\item
Predict next year's total productions of each of the three
sectors of the hypothetical economy shown below
\begin{center}
\begin{tabular}{r|rrrrr}
\multicolumn{1}{c}{\ } % omit the |
&\multicolumn{1}{r}{\begin{tabular}[b]{@{}c@{}}
\textit{used by} \\[-.65ex] \textit{farm}
\end{tabular}}
&\multicolumn{1}{r}{\begin{tabular}[b]{@{}c@{}}
\textit{used by} \\[-.65ex] \textit{rail}
\end{tabular}}
&\multicolumn{1}{r}{\begin{tabular}[b]{@{}c@{}}
\textit{used by} \\[-.65ex]
\textit{shipping}
\end{tabular}}
&\multicolumn{1}{r}{\begin{tabular}[b]{@{}c@{}}
\textit{used by} \\[-.65ex] \textit{others}
\end{tabular}}
&\textit{total} \\
\cline{2-6}
\begin{tabular}{r} \textit{value of} \\[-.65ex] \textit{farm}
\end{tabular}
&$25$ &$50$ &$100$ & &$800$ \\
\begin{tabular}{r} \textit{value of} \\[-.65ex] \textit{rail}
\end{tabular}
&$25$ &$50$ &$50$ & &$300$ \\
\begin{tabular}{r} \textit{value of} \\[-.65ex] \textit{shipping}
\end{tabular}
&$15$ &$10$ &$0$ & &$500$
\end{tabular}
\end{center}
if next year's external demands are as stated.
\begin{exparts}
\partsitem $625$ for farm, $200$ for rail, $475$ for shipping
\partsitem $650$ for farm, $150$ for rail, $450$ for shipping
\end{exparts}
\item
This table gives the interrelationships among three segments of an
economy (see \cite{BangorRpt}).
\begin{center}
\begin{tabular}{r|rrrrr}
\multicolumn{1}{c}{\ } % omit the |
&\multicolumn{1}{r}{\begin{tabular}[b]{@{}c@{}}
\textit{used by} \\[-.65ex] \textit{food}
\end{tabular}}
&\multicolumn{1}{r}{\begin{tabular}[b]{@{}c@{}}
\textit{used by} \\[-.65ex]
\textit{wholesale}
\end{tabular}}
&\multicolumn{1}{r}{\begin{tabular}[b]{@{}c@{}}
\textit{used by} \\[-.65ex] \textit{retail}
\end{tabular}}
&\multicolumn{1}{r}{\begin{tabular}[b]{@{}c@{}}
\textit{used by} \\[-.65ex] \textit{others}
\end{tabular}}
&\textit{total} \\
\cline{2-6}
\begin{tabular}[b]{r} \textit{value of} \\[-.65ex] \textit{food}
\end{tabular}
&$0$ &$2\,318$ &$4\,679$ & &$11\,869$ \\
\begin{tabular}[b]{r} \textit{value of} \\[-.65ex] \textit{wholesale}
\end{tabular}
&$393$ &$1\,089$ &$22\,459$ & &$122\,242$ \\
\begin{tabular}[b]{r} \textit{value of} \\[-.65ex] \textit{retail}
\end{tabular}
&$3$ &$53$ &$75$ & &$116\,041$ \\
\end{tabular}
\end{center}
We will do an Input-Output analysis on this
system.
\begin{exparts}
\partsitem Fill in the numbers for this year's external
demands.
\partsitem Set up the linear system, leaving next year's
external demands blank.
\partsitem Solve the system where we get next year's external demands
by taking this year's external demands and
inflating them $10$\%.
Do all three sectors increase their total business by
$10$\%?
Do they all even increase at the same rate?
\partsitem Solve the system where we get next year's external demands
by taking this year's external demands and
reducing them $7$\%.
(The study from which these numbers come concluded that
because of the closing of a local military facility, overall
personal income in the area would fall $7$\%, so this might
be a first guess at what would actually happen.)
\end{exparts}
\end{exercises}
\index{Input-Output Analysis|)}
\endinput