forked from compomics/moFF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
moff.py
executable file
·631 lines (521 loc) · 22.7 KB
/
moff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
#!/usr/bin/env python
import ConfigParser
import argparse
import ast
import bisect
import glob
import logging
import multiprocessing
import os as os
import shlex
import subprocess
import sys
import time
import traceback
from sys import platform as _platform
import numpy as np
import pandas as pd
import pymzml
import simplejson as json
log = logging.getLogger(__name__)
log.setLevel(logging.DEBUG)
"""
input
- MS2 ID file
- tol
- half rt time window in minute
output
- list of intensities..+
"""
TXIC_PATH = os.environ.get('TXIC_PATH', './')
def clean_json_temp_file(loc_output):
for f in glob.glob(loc_output + "*.json"):
os.remove(f)
return 1
def compute_peptide_matrix(loc_output, log, tag_filename):
name_col = []
name_col.append('prot')
d = []
if not glob.glob(loc_output + '/*_moff_result.txt'):
return -1
for name in glob.glob(loc_output + '/*_moff_result.txt'):
if 'match_' in os.path.basename(name):
name_col.append('sumIntensity_' + os.path.basename(name).split('_match_moff_result.txt')[0])
else:
name_col.append('sumIntensity_' + os.path.basename(name).split('_moff_result.txt')[0])
data = pd.read_csv(name, sep="\t")
'''
Other possibile quality controll filter
data = data[ data['lwhm'] != -1]
data = data[data['rwhm'] != -1 ]
'''
data = data[data['intensity'] != -1]
data.sort_values('rt', ascending=True, inplace=True)
log.critical('Collecting moFF result file : %s --> Retrived peptide peaks after filtering: %i',
os.path.basename(name), data.shape[0])
# cleaning peptide fragmented more than one time. we keep the earliest one
data.drop_duplicates(subset=['prot', 'peptide', 'mod_peptide', 'mass', 'charge'], keep='first', inplace=True)
d.append(data[['prot', 'peptide', 'mod_peptide', 'mass', 'charge', 'rt_peak', 'rt', 'intensity']])
intersect_share = reduce(np.union1d, ([x['peptide'].unique() for x in d]))
index = intersect_share
df = pd.DataFrame(index=index, columns=name_col)
df = df.fillna(0)
for i in range(0, len(d)):
grouped = d[i].groupby('peptide', as_index=True)['prot', 'intensity']
# print grouped.agg({'prot':'max', 'intensity':'sum'}).columns
df.ix[:, i + 1] = grouped.agg({'prot': 'max', 'intensity': 'sum'})['intensity']
df.ix[np.intersect1d(df.index, grouped.groups.keys()), 0] = grouped.agg({'prot': 'max', 'intensity': 'sum'})[
'prot']
# print df.head(5)
df.reset_index(level=0, inplace=True)
df = df.fillna(0)
df.rename(columns={'index': 'peptide'}, inplace=True)
log.critical('Writing peptide_summary intensity file')
df.to_csv(os.path.join(loc_output, "peptide_summary_intensity_" + tag_filename + ".tab"), sep='\t', index=False)
return 1
def save_moff_apex_result(list_df, result, folder_output, name):
#print len(list_df)
try:
xx = []
for df_index in range(0,len(list_df)):
if result[df_index].get()[1] == -1:
exit ('Raw file not retrieved: wrong path or upper/low case mismatch')
else:
#print result[df_index].get()[0]
xx.append( result[df_index].get()[0] )
#print len(xx)
final_res = pd.concat(xx)
if 'index' in final_res.columns:
final_res.drop('index',axis=1,inplace=True )
final_res.to_csv(os.path.join(folder_output, os.path.basename(name).split('.')[0] + "_moff_result.txt"), sep="\t",index=False)
except Exception as e :
traceback.print_exc()
print
# print os.path.join(folder_output,os.path.basename(name).split('.')[0] + "_moff_result.txt")
raise e
return (1)
def map_ps2moff(data,type_mapping):
data.drop(data.columns[[0]], axis=1, inplace=True)
data.columns = data.columns.str.lower()
if type_mapping == 'col_must_have_mbr':
data.rename(columns={'sequence': 'peptide', 'modified sequence': 'mod_peptide', 'measured charge': 'charge',
'theoretical mass': 'mass', 'protein(s)': 'prot', 'm/z': 'mz'}, inplace=True)
if type_mapping == 'col_must_have_apex':
data.rename(columns={'sequence': 'peptide', 'measured charge': 'charge', 'theoretical mass': 'mass',
'protein(s)': 'prot', 'm/z': 'mz'}, inplace=True)
return data, data.columns.values.tolist()
'''
input list of columns
list of column names from PS default template loaded from .properties
'''
def check_ps_input_data(input_column_name, list_col_ps_default):
input_column_name.sort()
list_col_ps_default.sort()
if list_col_ps_default == input_column_name:
# detected a default PS input file
return 1
else:
# not detected a default PS input file
return 0
def check_columns_name(col_list, col_must_have,log):
for c_name in col_must_have:
if not (c_name in col_list):
# fail
log.critical('This information is missing : %s ', c_name)
return 1
# succes
return 0
def scan_mzml ( name ):
# when I am using thermo raw and --raw_repo option used
if name is None:
return (-1,-1)
if ('MZML' in name.upper()):
rt_list = []
runid_list = []
run_temp = pymzml.run.Reader( name )
for spectrum in run_temp:
if spectrum['ms level'] == 1:
rt_list.append(spectrum['scan start time'])
runid_list.append(spectrum['id'])
return (rt_list,runid_list )
else:
# in case of raw file I put to -1 -1 thm result
return (-1,-1 )
def mzML_get_all( temp,tol,loc,run, rt_list1, runid_list1 ):
app_list=[]
for index_ms2, row in temp.iterrows():
data, status=pyMZML_xic_out(loc, float(tol / (10 ** 6)), row['ts'], row['te'], row['mz'],run, runid_list1,rt_list1 )
# status is evaluated only herenot used anymore
if status != -1 :
app_list.append(data)
else:
app_list.append(pd.DataFrame(columns=['rt','intensity']))
return app_list
def pyMZML_xic_out(name, ppmPrecision, minRT, maxRT, MZValue,run, runid_list,rt_list ):
timeDependentIntensities = []
minpos = bisect.bisect_left(rt_list, minRT)
maxpos = bisect.bisect_left(rt_list, maxRT)
for specpos in range(minpos,maxpos):
specid = runid_list[specpos]
spectrum = run[specid]
if spectrum['scan start time'] > maxRT:
break
if spectrum['scan start time'] > minRT and spectrum['scan start time'] < maxRT:
#print 'in ', specid
lower_index = bisect.bisect(spectrum.peaks, (float(MZValue - ppmPrecision * MZValue), None))
upper_index = bisect.bisect(spectrum.peaks, (float(MZValue + ppmPrecision * MZValue), None))
maxI = 0.0
for sp in spectrum.peaks[lower_index: upper_index]:
if sp[1] > maxI:
maxI = sp[1]
if maxI > 0:
timeDependentIntensities.append([spectrum['scan start time'], maxI])
if len(timeDependentIntensities) > 5:
return (pd.DataFrame(timeDependentIntensities, columns=['rt', 'intensity']), 1)
else:
return (pd.DataFrame(timeDependentIntensities, columns=['rt', 'intensity']), -1)
def check_log_existence(file_to_check):
if os.path.isfile(file_to_check):
os.remove(file_to_check)
return 1
else:
return -1
def check_output_folder_existence(loc_output ):
if not os.path.exists(loc_output):
os.mkdir(loc_output)
return 1
else:
return 0
def compute_log_LR (data_xic,index,v_max, disc):
log_time = [-1, -1]
c_left = 0
find_5 = False
stop = False
while c_left <= (index - 1) and not stop:
if not find_5 and ( data_xic.ix[(index - 1) - c_left, 1] <= ( disc * v_max)):
find_5 = True
log_time[0] = data_xic.ix[(index - 1) - c_left, 0] * 60
stop = True
c_left += 1
find_5 = False
stop = False
r_left = 0
while ((index + 1) + r_left < data_xic.shape[0] ) and not stop:
if not find_5 and data_xic.ix[(index + 1) + r_left, 1] <= (disc * v_max):
find_5 = True
log_time[1] = data_xic.ix[(index + 1) + r_left, 0] * 60
stop = True
r_left += 1
return log_time
def compute_peak_simple(x,xic_array,log,mbr_flag, h_rt_w,s_w,s_w_match,offset_index,moff_pride_flag ):
c = x.name
data_xic = xic_array[c]
if moff_pride_flag == 1:
# daling with rt in minutes , moffpride input data
time_w= x['rt']
else:
## standar cases rt must be in second
time_w= x['rt'] /60
if mbr_flag == 0:
log.info('peptide at line %i --> MZ: %4.4f RT: %4.4f',(offset_index +c +2), x['mz'], time_w)
temp_w = s_w
else:
log.info('peptide at line %i --> MZ: %4.4f RT: %4.4f matched (yes=1/no=0): %i',(offset_index + c +2), x['mz'], time_w,x['matched'])
# row['matched'])
if x['matched'] == 1:
temp_w = s_w_match
else:
temp_w = s_w
if data_xic[(data_xic['rt'] > (time_w - temp_w)) & (data_xic['rt'] < (time_w + temp_w))].shape[0] >= 1:
#data_xic[(data_xic['rt'] > (time_w - temp_w)) & (data_xic['rt'] < (time_w + temp_w))].to_csv('thermo_testXIC_'+str(c)+'.txt',index=False,sep='\t')
ind_v = data_xic.index
pp = data_xic[data_xic["intensity"] == data_xic[(data_xic['rt'] > (time_w - temp_w)) & (data_xic['rt'] < (time_w + temp_w))]['intensity'].max()].index
pos_p = ind_v[pp]
if pos_p.values.shape[0] > 1:
print 'error'
return pd.Series({'intensity': -1, 'rt_peak': -1,'lwhm':-1,'rwhm':-1,'5p_noise':-1,'10p_noise':-1,'SNR':-1,'log_L_R':-1,'log_int':-1})
val_max = data_xic.ix[pos_p, 1].values
else:
log.info('peptide at line %i --> MZ: %4.4f RT: %4.4f ', (offset_index +c +2), x['mz'], time_w)
log.info("\t LW_BOUND window %4.4f", time_w - temp_w)
log.info("\t UP_BOUND window %4.4f", time_w + temp_w)
log.info("\t WARNINGS: moff_rtWin_peak is not enough to detect the max peak ")
return pd.Series({'intensity': -1, 'rt_peak': -1,
'lwhm':-1,
'rwhm':-1,
'5p_noise':-1,
'10p_noise':-1,
'SNR':-1,
'log_L_R':-1,
'log_int':-1})
pnoise_5 = np.percentile(data_xic[(data_xic['rt'] > (time_w - h_rt_w )) & (data_xic['rt'] < (time_w + h_rt_w ))]['intensity'], 5 )
pnoise_10 = np.percentile( data_xic[(data_xic['rt'] > (time_w - h_rt_w )) & (data_xic['rt'] < (time_w + h_rt_w) )]['intensity'], 10)
# find the lwhm and rwhm
time_point = compute_log_LR(data_xic, pos_p[0], val_max, 0.5)
if (time_point[0]*time_point[1] == 1) or (time_point[0]*time_point[1] < 0):
# Try a second time FWHM computation with 0.7 * max intensity
time_point = compute_log_LR (data_xic,pos_p[0],val_max,0.7)
if time_point[0]== -1 or time_point[1] ==-1:
# keep the shape measure to -1 in case on txo point are -1
log_L_R=-1
else:
log_L_R= np.log2(abs( time_w - time_point[0]) / abs( time_w - time_point[1]))
if (pnoise_5 == 0 and pnoise_10 > 0):
SNR = 20 * np.log10(data_xic.ix[pos_p, 1].values / pnoise_10)
else:
if pnoise_5 != 0:
SNR = 20 * np.log10(data_xic.ix[pos_p, 1].values / pnoise_5)
else:
log.info('\t 5 percentile is %4.4f (added 0.5)', pnoise_5)
SNR = 20 * np.log10(data_xic.ix[pos_p, 1].values / (pnoise_5 +0.5))
return pd.Series({'intensity': val_max[0], 'rt_peak': data_xic.ix[pos_p, 0].values[0] * 60,
'lwhm': time_point[0] ,
'rwhm': time_point[1] ,
'5p_noise': pnoise_5,
'10p_noise':pnoise_10,
'SNR':SNR[0],
'log_L_R': log_L_R,
'log_int': np.log2(val_max)[0] })
def apex_multithr(data_ms2,name_file, raw_name, tol, h_rt_w, s_w, s_w_match, loc_raw, loc_output,offset_index, rt_list , id_list, moff_pride_flag ):
#setting logger for multiprocess
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
log.addHandler(ch)
#setting flag and ptah
moff_path = os.path.dirname(sys.argv[0])
flag_mzml = False
flag_windows = False
mbr_flag = 0
# set platform
if _platform in ["linux", "linux2", 'darwin']:
flag_windows = False
elif _platform == "win32":
flag_windows = True
# check output log file in right location
if loc_output != '':
if not (os.path.isdir(loc_output)):
os.makedirs(loc_output)
log.info("created output folder: ", loc_output)
# to be checked if it is works ffor both caseses
fh = logging.FileHandler(os.path.join(loc_output, name_file + '__moff.log'), mode='a')
fh.setLevel(logging.INFO)
log.addHandler(fh)
# check mbr input file
if '_match' in name_file:
# in case of mbr , here i dont have evaluate the flag mbr
start = name_file.find('_match')
# extract the name of the file
name_file = name_file[0:start]
if loc_raw is not None:
if flag_windows:
loc = os.path.join(loc_raw, name_file.upper()+ '.RAW')
else:
# raw file name must have capitals letters :) this shloud be checked
# this should be done in moe elegant way
loc = os.path.normcase(os.path.join(loc_raw, name_file + '.RAW'))
if not (os.path.isfile(loc)):
loc = os.path.join(loc_raw, name_file + '.raw')
else:
#mzML work only with --inputraw option
loc = raw_name
if ('MZML' in raw_name.upper()):
flag_mzml = True
if os.path.isfile(loc):
log.info('raw file exist')
else:
#exit('ERROR: Wrong path or wrong raw file name included: %s' % loc )
log.info('ERROR: Wrong path or wrong raw file name included: %s' % loc )
return (None,-1)
index_offset = data_ms2.columns.shape[0] - 1
data_ms2["intensity"] = -1
data_ms2["rt_peak"] = -1
data_ms2["lwhm"] = -1
data_ms2["rwhm"] = -1
data_ms2["5p_noise"] = -1
data_ms2["10p_noise"] = -1
data_ms2["SNR"] = -1
data_ms2["log_L_R"] = -1
data_ms2["log_int"] = -1
data_ms2["rt_peak"] = data_ms2["rt_peak"].astype('float64')
data_ms2['intensity'] = data_ms2['intensity'].astype('float64')
data_ms2['lwhm'] = data_ms2['lwhm'].astype('float64')
data_ms2["rwhm"] = data_ms2['rwhm'].astype('float64')
data_ms2["5p_noise"] = data_ms2['5p_noise'].astype('float64')
data_ms2["10p_noise"] = data_ms2['10p_noise'].astype('float64')
data_ms2["SNR"] = data_ms2['SNR'].astype('float64')
data_ms2["log_L_R"] = data_ms2['log_L_R'].astype('float64')
data_ms2["log_int"] = data_ms2['log_int'].astype('float64')
# set mbr_flag
if 'matched' in data_ms2.columns:
mbr_flag = 1
#log.critical('Apex module has detected mbr peptides')
#log.info('moff_rtWin_peak for matched peptide: %4.4f ', s_w_match)
# get txic path: assumes txic is in the same directory as moff.py
txic_executable_name="txic_json.exe"
txic_path = os.path.join(os.path.dirname(os.path.realpath(sys.argv[0])), txic_executable_name)
## to export a list of XIc
try:
temp=data_ms2[['mz','rt']].copy()
# strange cases
temp.ix[:,'tol'] = int( tol)
if moff_pride_flag == 1:
temp['ts'] = (data_ms2['rt'] ) - h_rt_w
temp['te'] = (data_ms2['rt'] ) + h_rt_w
else:
temp['ts'] = (data_ms2['rt'] /60 ) - h_rt_w
temp['te'] = (data_ms2['rt'] /60 ) + h_rt_w
temp.drop('rt',1,inplace=True )
if not flag_mzml :
# txic-28-9-separate-jsonlines.exe
if not flag_windows:
# Linux to avoid cmd string too long and its error. the thresold is mainly base on from empirical evaluation.
if len(temp.to_json(orient='records')) >= 50000:
with open(os.path.join(loc_output,multiprocessing.current_process().name +'_' + name_file + '.json'), 'w') as f:
f.write(temp.to_json(orient='records'))
args_txic = shlex.split( "mono " + txic_path + " -jf " + os.path.join(loc_output,multiprocessing.current_process().name +'_' + name_file + '.json') + " -f " + loc, posix=False)
else:
# small amount of char. in the request
args_txic = shlex.split( "mono " + txic_path + " -j " + temp.to_json( orient='records' ) + " -f " + loc,posix=True )
else:
# Windows to avoid cmd string too long and its error. the thresold is mainly base on from empirical evaluation.
if len(temp.to_json(orient='records')) >= 10000:
with open(os.path.join(loc_output,multiprocessing.current_process().name + '_' + name_file + '.json'), 'w') as f:
f.write(temp.to_json(orient='records'))
args_txic = shlex.split(txic_path + " -jf " + os.path.join(loc_output,multiprocessing.current_process().name + '_' + name_file + '.json') + " -f " + loc, posix=False)
else:
# small amount of char. in the request
args_txic = shlex.split(txic_path + " -j " + temp.to_json(orient='records') + " -f " + loc, posix=False)
start_timelocal = time.time()
p = subprocess.Popen(args_txic, stdout=subprocess.PIPE)
output, err = p.communicate()
xic_data=[]
for l in range ( 0,temp.shape[0] ) :
temp = json.loads( output.split('\n')[l].decode("utf-8") )
xic_data.append(pd.DataFrame( { 'rt' : temp['results']['times'], 'intensity': temp['results']['intensities'] } , columns=['rt', 'intensity'] ) )
else:
run_temp = pymzml.run.Reader(raw_name)
xic_data = mzML_get_all( temp,tol,loc, run_temp ,rt_list , id_list )
#10p_noise 5p_noise SNR intensity log_L_R log_int lwhm rt_peak rwhm
data_ms2.reset_index(inplace=True)
data_ms2[['10p_noise','5p_noise','SNR','intensity','log_L_R','log_int' ,'lwhm','rt_peak','rwhm']] = data_ms2.apply(lambda x : compute_peak_simple( x,xic_data ,log,mbr_flag ,h_rt_w,s_w,s_w_match,offset_index, moff_pride_flag ) , axis=1 )
except Exception as e:
traceback.print_exc()
print
raise e
return (data_ms2,1)
def main_apex_alone():
parser = argparse.ArgumentParser(description='moFF input parameter')
parser.add_argument('--inputtsv', dest='name', action='store',
help='specify the input file with the MS2 peptides/features', required=True)
parser.add_argument('--inputraw', dest='raw_list', action='store', help='specify directly raw file', required=False)
parser.add_argument('--tol', dest='toll', action='store', type=float, help='specify the tollerance parameter in ppm',
required=True)
parser.add_argument('--rt_w', dest='rt_window', action='store', type=float, default=3,
help='specify rt window for xic (minute). Default value is 3 min', required=False)
parser.add_argument('--rt_p', dest='rt_p_window', action='store', type=float, default=1,
help='specify the time windows for the peak ( minute). Default value is 1 minute ', required=False)
parser.add_argument('--rt_p_match', dest='rt_p_window_match', action='store', type=float, default=1.2,
help='specify the time windows for the matched peak ( minute). Default value is 1.2 minute ',
required=False)
parser.add_argument('--raw_repo', dest='raw', action='store', help='specify the raw file repository folder',
required=False)
parser.add_argument('--output_folder', dest='loc_out', action='store', default='', help='specify the folder output',
required=False)
parser.add_argument('--peptide_summary', dest='pep_matrix', action='store', type=int, default=0, help='summarize all the peptide intesity in one tab-delited file ',required=False)
parser.add_argument('--tag_pep_sum_file', dest='tag_pepsum', action='store', type=str, default='moFF_run', help='a tag that is used in the peptide summary file name', required=False)
args = parser.parse_args()
if (args.raw_list is None) and (args.raw is None):
exit('you must specify and raw files with --inputraw (file name) or --raw_repo (folder)')
if (args.raw_list is not None) and (args.raw is not None):
exit('you must specify raw files using only one options --inputraw (file name) or --raw_repo (folder) ')
file_name = args.name
tol = args.toll
h_rt_w = args.rt_window
s_w = args.rt_p_window
s_w_match = args.rt_p_window_match
loc_raw = args.raw
loc_output = args.loc_out
# set stream option for logger
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
log.addHandler(ch)
config = ConfigParser.RawConfigParser()
config.read(os.path.join(os.path.dirname(os.path.realpath(sys.argv[0])), 'moff_setting.properties'))
df = pd.read_csv(file_name, sep="\t")
#df = df.ix[254:258,:]
## check and eventually tranf for PS template
moff_pride_flag = 0
if check_ps_input_data(df.columns.tolist(), ast.literal_eval(config.get('moFF', 'moffpride_format'))) == 1:
# if it is a moff_pride data I do not check aany other requirement
log.critical('moffPride input detected')
moff_pride_flag = 1
else:
if not 'matched' in df.columns:
# check if it is a PS file ,
list_name = df.columns.values.tolist()
# get the lists of PS defaultcolumns from properties file
list = ast.literal_eval(config.get('moFF', 'ps_default_export_v1'))
# here it controls if the input file is a PS export; if yes it maps the input in right moFF name
if check_ps_input_data(list_name, list) == 1:
# map the columns name according to moFF input requirements
if args.pep_matrix != 1:
data_ms2, list_name = map_ps2moff(df,'col_must_have_apex')
else:
data_ms2, list_name = map_ps2moff(df, 'col_must_have_mbr')
## check if the field names are good, in case of pep summary we need same req as in mbr
if args.pep_matrix == 1:
if check_columns_name(df.columns.tolist(), ast.literal_eval(config.get('moFF', 'col_must_have_mbr')),log) == 1 :
exit('ERROR minimal field requested are missing or wrong')
else:
if check_columns_name(df.columns.tolist(), ast.literal_eval(config.get('moFF', 'col_must_have_apex')),log) == 1 :
exit('ERROR minimal field requested are missing or wrong')
# flag to check idf the input are from moffPride file.
# if so, rt is already in minutes
log.critical('moff Input file: %s XIC_tol %s XIC_win %4.4f moff_rtWin_peak %4.4f ' % (file_name, tol, h_rt_w, s_w))
if args.raw_list is None:
log.critical('RAW file from folder : %s' % loc_raw)
else:
log.critical('RAW file : %s' % args.raw_list)
log.critical('Output file in : %s', loc_output)
# multiprocessing.cpu_count()
data_split = np.array_split(df, multiprocessing.cpu_count() )
'''
# small workaround to prevent max input line in Linux
if data_split[0].shape > 2500 :
# increase the number of splitting a bit more than the CPUs in order to get splice smaller than 2500
data_split = np.array_split(df, (multiprocessing.cpu_count()+8) )
'''
##used for test
log.critical('Starting Apex .....')
name = os.path.basename(file_name).split('.')[0]
check_output_folder_existence(loc_output )
##check the existencce of the log file before to go to multiprocess
check_log_existence(os.path.join(loc_output, name + '__moff.log'))
rt_list , id_list = scan_mzml ( args.raw_list )
#multiprocessing.cpu_count()
myPool = multiprocessing.Pool( multiprocessing.cpu_count() )
## code below id for testing
#myPool = multiprocessing.Pool(10 )
## end testing
result = {}
offset = 0
start_time = time.time()
for df_index in range(0, len(data_split)):
result[df_index] = myPool.apply_async(apex_multithr, args=(
data_split[df_index], name, args.raw_list, tol, h_rt_w, s_w, s_w_match, loc_raw, loc_output, offset, rt_list , id_list, moff_pride_flag ))
offset += len(data_split[df_index])
myPool.close()
myPool.join()
log.critical('...apex terminated')
log.critical( 'Computational time (sec): %4.4f ' % (time.time() -start_time))
print 'Time no result collect', time.time() -start_time
start_time_2 = time.time()
save_moff_apex_result(data_split, result, loc_output, file_name)
#print 'Time no result collect 2', time.time() -start_time_2
if args.pep_matrix == 1 :
# # TO DO manage the error with retunr -1 like in moff_all.py master repo
state = compute_peptide_matrix(loc_output,log,args.tag_pepsum)
if state ==-1 :
log.critical ('Error during the computation of the peptide intensity summary file: Check the output folder that contains the moFF results file')
if __name__ == '__main__':
main_apex_alone()