-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathclosest.py
167 lines (134 loc) · 4.22 KB
/
closest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import pdb
import time
import math
import random
def populate(n):
"""
Populate the list L and return it. Populate it with
n elements sampled from the range (start,end)
Parameters
----------
n : elements in the list
start : starting range of the random function to sample.
end : end range of the random function to sample.
Returns
-------
A list with n elements.
"""
#use a for loop to pick n elements in the range of
#start to end.
L=[]
for i in range(n):
#using a built in random function.
L.append(int( (random.random())*(10**16)))
return L
def create_table(L,delta):
"""
Given the list L create a hash table and return the same.
Use the parameter delta to create the hash table. delta
is the difference between the closest two elements.
"""
#create an empty list of empty lists, this will be
#our hash table with n elements, where n is the length
#of the given list.
H=[]
for i in range(len(L)):
H.append([])
#after creating an empty hash table, include all the
#elements of L into the hash table
#for every point x in L
for x in L:
#find out which delta house it is in and
#put x into its appropriate delta house
#which is simply int(x/delta)
H[(int(x/delta))%len(H)].append(x)
return H
def sort_first_few(L,k):
"""
This will sort the first k elements in the list and returns back the list
Takes L and returns L where the first k elements of L is sorted.
"""
#works only if L has more than 100 elements
if len(L)>k:
#then sort the list using the obvious sorting technique
for i in range(k):
mini=i
for j in range(i+1,k):
if L[j]<L[mini]:
mini=j
L[i],L[mini]=L[mini],L[i]
return L
def disturbance(H,Points,new_point,delta):
"""
Parameters
----------
H: The hashtable
Points : All the points
new_point : The new point that is added
delta : The delta in Points
Returns
-------
0: if the new point creates disturbance
1: if the new point doesn't create any disturbance
also returns the point that is creating the disturbance
along with the new_point
"""
#We need to check if the newly added point creates
#any disturbance.
#distance is when its delta house has another point
#or its 1st or 2nd neighbor has a point whose distance
#from the new_point is less than delta.
#We just return 0 or 1
def push_hash(H,new_point,delta):
"""
Simply pushes the new_point to the hashtable H.
Parameters
----------
H : The Hashtable
new_point : The new point that needs to be pushed to
the hash table
delta : the existing closest pair distance. Note
that this doesn't change or get updated. This is
only used to hash the new_point.
Returns
-------
the hash table H.
"""
def iteratively_add_number(H,Points,new_point,delta,a,b):
"""
This will add a number to the existing list of numbers
and check if this results in a disturbance. If it does
result in a disturbance, it will rehash the points
using a new delta value.
Returns Hashtable, updated points, new delta
Returns
-------
Hashtable(updated), Points(update), delta(updated), (a,b)
where a,b are the points
"""
#we assume that the list 'Points' has atleast 3 points.
#flag will contain if there is disturbance or not.
#disturbing_point will be that number which will pair up with the new_point
#which is creating the disturbance, thus contributing to the new delta
#which is delta=abs(new_point-disturbing_point)
def closest_pair_obvious(L):
a=L[0]
b=L[1]
mini=abs(L[1]-L[0])
for i in range(len(L)):
for j in range(i+1,len(L)):
if abs(L[i]-L[j]) <mini:
a=L[i]
b=L[j]
mini=abs(a-b)
return a,b,mini
def closest_pair_genius(L):
#simply sort the first 100 elements in the list L.
#and for the rest, iterate through it.
n=10000000
L=populate(n)
t1=time.time()
print(t1)
print(closest_pair_genius(L))
t2=time.time()
print(t2-t1)