-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrag_agent.py
136 lines (108 loc) · 4.54 KB
/
rag_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Pippy's AI-Coding Assistant
# Uses Llama3.1 model from Ollama
import os
import warnings
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.document_loaders import PyMuPDFLoader, TextLoader
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_ollama.llms import OllamaLLM
from langchain.prompts import ChatPromptTemplate
# Document paths loaded in the RAG model
document_paths = [
'./docs/Pygame Documentation.pdf',
'./docs/Python GTK+3 Documentation.pdf',
'./docs/Sugar Toolkit Documentation.pdf'
]
# Revised Prompt Template to avoid mentioning the source
PROMPT_TEMPLATE = """
You are a highly intelligent Python coding assistant built for kids.
You are ONLY allowed to answer Python and GTK-based coding questions.
1. Focus on coding-related problems, errors, and explanations.
2. Use the knowledge from the provided Pygame and GTK documentation without explicitly mentioning the documents as the source.
3. Provide step-by-step explanations wherever applicable.
4. If the documentation does not contain relevant information, use your general knowledge.
5. Always be clear, concise, and provide examples where necessary.
6. Your answer must be easy to understand for the kids.
Question: {question}
Answer: Let's think step by step.
"""
class RAG_Agent:
def __init__(self, model="llama3.1"):
self.model = OllamaLLM(model=model)
self.retriever = None
self.prompt = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
def set_model(self, model):
self.model = OllamaLLM(model=model)
def get_model(self):
return self.model
# Loading the docs for retrieval in Vector Database
def setup_vectorstore(self, file_paths):
"""
Set up a vector store from the provided document files.
Args:
file_paths (list): List of paths to document files.
Returns:
retriever: A retriever object for document retrieval.
"""
all_documents = []
for file_path in file_paths:
if os.path.exists(file_path):
if file_path.endswith(".pdf"):
loader = PyMuPDFLoader(file_path)
else:
loader = TextLoader(file_path)
documents = loader.load()
all_documents.extend(documents)
# Using HuggingFace embeddings
embeddings = HuggingFaceEmbeddings()
vector_store = FAISS.from_documents(all_documents, embeddings)
retriever = vector_store.as_retriever()
return retriever
def get_relevant_document(self, query, threshold=0.5):
"""
Check if the query is related to a document by using the retriever.
Args:
query (str): The user query.
threshold (float): The confidence threshold to decide
if a query is related to the document.
Returns:
tuple: (top_result, score) if relevant document found, otherwise (None, 0.0)
"""
results = self.retriever.invoke(query)
if results:
# Check the confidence score of the top result
top_result = results[0]
score = top_result.metadata.get("score", 0.0)
if score >= threshold:
return top_result, score
return None, 0.0
def run(self):
# Format documents for context
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
# Create the LCEL chain
# Ref. https://python.langchain.com/docs/versions/migrating_chains/retrieval_qa/
qa_chain = (
{
"context": self.retriever | format_docs,
"question": RunnablePassthrough()
}
| self.prompt
| self.model
| StrOutputParser()
)
while True:
question = input().strip()
doc_result, relevance_score = self.get_relevant_document(question)
# Classifying query based on it's relevance with retrieved context
if doc_result:
response = qa_chain.invoke({"query": question, "context": doc_result.page_content})
else:
response = qa_chain.invoke(question)
return response
if __name__ == "__main__":
agent = RAG_Agent()
agent.retriever = agent.setup_vectorstore(document_paths)
agent.run()