forked from taishan1994/pytorch_bert_entity_linking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathel_process.py
70 lines (63 loc) · 2.82 KB
/
el_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
"""
该文件主要的作用是存储一些我们要用到的数据
"""
import os
import json
from collections import defaultdict
data_path = './data/ccks2019'
kb_data_file = data_path + '/kb_data'
train_data_file = data_path + '/train.json'
# 保存知识库中所有的别名以及实体,格式为每个名字一行
# 我们也将训练集中的提及加入到这里面,因为像南京南站虽然是知识库中的提及,但是在知识库中并没有该实体名
# 将所有的英文全部转换为小写
alias_and_subjects = []
alias_and_subjects_file = open(data_path+'/alias_and_subjects.txt','w',encoding='utf-8')
# 保存每个实体在知识库中对应的id(一对多),
# 格式为名字:{'subject_id':'','subject_name':''}
entity_to_ids = defaultdict(list)
entity_to_ids_files = open(data_path+'/entity_to_ids.json','w')
# 用于保存每个实体的类型
entity_type = []
entity_type_file = open(data_path+'/entity_type.txt','w',encoding='utf-8')
# 用于保存每个subject_id对应的信息
subject_id_with_info = defaultdict(dict)
subject_id_with_info_file = open(data_path+'/subject_id_with_info.json','w')
with open(kb_data_file,'r') as fp:
lines = fp.readlines()
total = len(lines)-1
for i,line in enumerate(lines):
print(i, total)
line = eval(line)
for e_type in line['type']:
entity_type.append(e_type)
for word in line['alias']:
word = word.lower()
alias_and_subjects.append(word)
if line['subject_id'] not in entity_to_ids[word]:
entity_to_ids[word].append(line['subject_id'])
subject_id_with_info[line['subject_id']] = line
print("===============================")
with open(train_data_file,'r') as fp:
lines = fp.readlines()
total = len(lines)-1
for i,line in enumerate(lines):
print(i, total)
line = eval(line)
mention_datas = line['mention_data']
for mention_data in mention_datas:
word = mention_data['mention'].lower()
alias_and_subjects.append(word)
if mention_data['kb_id'] not in entity_to_ids[word]:
entity_to_ids[word].append(mention_data['kb_id'])
entity_type = list(set(entity_type))
entity_type_str = "\n".join(entity_type)
alias_and_subjects = sorted(list(set(alias_and_subjects)), key=lambda x: len(x), reverse=True)
alias_and_subjects_str = "\n".join(alias_and_subjects)
alias_and_subjects_file.write(alias_and_subjects_str)
entity_type_file.write(entity_type_str)
entity_to_ids_files.write(json.dumps(entity_to_ids, ensure_ascii=False))
subject_id_with_info_file.write(json.dumps(subject_id_with_info, ensure_ascii=False))
alias_and_subjects_file.close()
entity_type_file.close()
entity_to_ids_files.close()
subject_id_with_info_file.close()