forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_ops.py
197 lines (167 loc) · 6.1 KB
/
custom_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains convenience wrappers for typical Neural Network TensorFlow layers.
Ops that have different behavior during training or eval have an is_training
parameter.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
arg_scope = tf.contrib.framework.arg_scope
def variable(name, shape, dtype, initializer, trainable):
"""Returns a TF variable with the passed in specifications."""
var = tf.get_variable(
name,
shape=shape,
dtype=dtype,
initializer=initializer,
trainable=trainable)
return var
def global_avg_pool(x, scope=None):
"""Average pools away spatial height and width dimension of 4D tensor."""
assert x.get_shape().ndims == 4
with tf.name_scope(scope, 'global_avg_pool', [x]):
kernel_size = (1, int(x.shape[1]), int(x.shape[2]), 1)
squeeze_dims = (1, 2)
result = tf.nn.avg_pool(
x,
ksize=kernel_size,
strides=(1, 1, 1, 1),
padding='VALID',
data_format='NHWC')
return tf.squeeze(result, squeeze_dims)
def zero_pad(inputs, in_filter, out_filter):
"""Zero pads `input` tensor to have `out_filter` number of filters."""
outputs = tf.pad(inputs, [[0, 0], [0, 0], [0, 0],
[(out_filter - in_filter) // 2,
(out_filter - in_filter) // 2]])
return outputs
@tf.contrib.framework.add_arg_scope
def batch_norm(inputs,
decay=0.999,
center=True,
scale=False,
epsilon=0.001,
is_training=True,
reuse=None,
scope=None):
"""Small wrapper around tf.contrib.layers.batch_norm."""
return tf.contrib.layers.batch_norm(
inputs,
decay=decay,
center=center,
scale=scale,
epsilon=epsilon,
activation_fn=None,
param_initializers=None,
updates_collections=tf.GraphKeys.UPDATE_OPS,
is_training=is_training,
reuse=reuse,
trainable=True,
fused=True,
data_format='NHWC',
zero_debias_moving_mean=False,
scope=scope)
def stride_arr(stride_h, stride_w):
return [1, stride_h, stride_w, 1]
@tf.contrib.framework.add_arg_scope
def conv2d(inputs,
num_filters_out,
kernel_size,
stride=1,
scope=None,
reuse=None):
"""Adds a 2D convolution.
conv2d creates a variable called 'weights', representing the convolutional
kernel, that is convolved with the input.
Args:
inputs: a 4D tensor in NHWC format.
num_filters_out: the number of output filters.
kernel_size: an int specifying the kernel height and width size.
stride: an int specifying the height and width stride.
scope: Optional scope for variable_scope.
reuse: whether or not the layer and its variables should be reused.
Returns:
a tensor that is the result of a convolution being applied to `inputs`.
"""
with tf.variable_scope(scope, 'Conv', [inputs], reuse=reuse):
num_filters_in = int(inputs.shape[3])
weights_shape = [kernel_size, kernel_size, num_filters_in, num_filters_out]
# Initialization
n = int(weights_shape[0] * weights_shape[1] * weights_shape[3])
weights_initializer = tf.random_normal_initializer(
stddev=np.sqrt(2.0 / n))
weights = variable(
name='weights',
shape=weights_shape,
dtype=tf.float32,
initializer=weights_initializer,
trainable=True)
strides = stride_arr(stride, stride)
outputs = tf.nn.conv2d(
inputs, weights, strides, padding='SAME', data_format='NHWC')
return outputs
@tf.contrib.framework.add_arg_scope
def fc(inputs,
num_units_out,
scope=None,
reuse=None):
"""Creates a fully connected layer applied to `inputs`.
Args:
inputs: a tensor that the fully connected layer will be applied to. It
will be reshaped if it is not 2D.
num_units_out: the number of output units in the layer.
scope: Optional scope for variable_scope.
reuse: whether or not the layer and its variables should be reused.
Returns:
a tensor that is the result of applying a linear matrix to `inputs`.
"""
if len(inputs.shape) > 2:
inputs = tf.reshape(inputs, [int(inputs.shape[0]), -1])
with tf.variable_scope(scope, 'FC', [inputs], reuse=reuse):
num_units_in = inputs.shape[1]
weights_shape = [num_units_in, num_units_out]
unif_init_range = 1.0 / (num_units_out)**(0.5)
weights_initializer = tf.random_uniform_initializer(
-unif_init_range, unif_init_range)
weights = variable(
name='weights',
shape=weights_shape,
dtype=tf.float32,
initializer=weights_initializer,
trainable=True)
bias_initializer = tf.constant_initializer(0.0)
biases = variable(
name='biases',
shape=[num_units_out,],
dtype=tf.float32,
initializer=bias_initializer,
trainable=True)
outputs = tf.nn.xw_plus_b(inputs, weights, biases)
return outputs
@tf.contrib.framework.add_arg_scope
def avg_pool(inputs, kernel_size, stride=2, padding='VALID', scope=None):
"""Wrapper around tf.nn.avg_pool."""
with tf.name_scope(scope, 'AvgPool', [inputs]):
kernel = stride_arr(kernel_size, kernel_size)
strides = stride_arr(stride, stride)
return tf.nn.avg_pool(
inputs,
ksize=kernel,
strides=strides,
padding=padding,
data_format='NHWC')