forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_builder.py
192 lines (165 loc) · 8.26 KB
/
model_builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A function to build a DetectionModel from configuration."""
from lstm_object_detection.meta_architectures import lstm_ssd_meta_arch
from lstm_object_detection.models import lstm_ssd_interleaved_mobilenet_v2_feature_extractor
from lstm_object_detection.models import lstm_ssd_mobilenet_v1_feature_extractor
from object_detection.builders import anchor_generator_builder
from object_detection.builders import box_coder_builder
from object_detection.builders import box_predictor_builder
from object_detection.builders import hyperparams_builder
from object_detection.builders import image_resizer_builder
from object_detection.builders import losses_builder
from object_detection.builders import matcher_builder
from object_detection.builders import model_builder
from object_detection.builders import post_processing_builder
from object_detection.builders import region_similarity_calculator_builder as sim_calc
from object_detection.core import target_assigner
model_builder.SSD_FEATURE_EXTRACTOR_CLASS_MAP.update({
'lstm_ssd_mobilenet_v1':
lstm_ssd_mobilenet_v1_feature_extractor
.LSTMSSDMobileNetV1FeatureExtractor,
'lstm_ssd_interleaved_mobilenet_v2':
lstm_ssd_interleaved_mobilenet_v2_feature_extractor
.LSTMSSDInterleavedMobilenetV2FeatureExtractor,
})
SSD_FEATURE_EXTRACTOR_CLASS_MAP = model_builder.SSD_FEATURE_EXTRACTOR_CLASS_MAP
def build(model_config, lstm_config, is_training):
"""Builds a DetectionModel based on the model config.
Args:
model_config: A model.proto object containing the config for the desired
DetectionModel.
lstm_config: LstmModel config proto that specifies LSTM train/eval configs.
is_training: True if this model is being built for training purposes.
Returns:
DetectionModel based on the config.
Raises:
ValueError: On invalid meta architecture or model.
"""
return _build_lstm_model(model_config.ssd, lstm_config, is_training)
def _build_lstm_feature_extractor(feature_extractor_config,
is_training,
lstm_config,
reuse_weights=None):
"""Builds a ssd_meta_arch.SSDFeatureExtractor based on config.
Args:
feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
is_training: True if this feature extractor is being built for training.
lstm_config: LSTM-SSD specific configs.
reuse_weights: If the feature extractor should reuse weights.
Returns:
ssd_meta_arch.SSDFeatureExtractor based on config.
Raises:
ValueError: On invalid feature extractor type.
"""
feature_type = feature_extractor_config.type
depth_multiplier = feature_extractor_config.depth_multiplier
min_depth = feature_extractor_config.min_depth
pad_to_multiple = feature_extractor_config.pad_to_multiple
use_explicit_padding = feature_extractor_config.use_explicit_padding
use_depthwise = feature_extractor_config.use_depthwise
conv_hyperparams = hyperparams_builder.build(
feature_extractor_config.conv_hyperparams, is_training)
override_base_feature_extractor_hyperparams = (
feature_extractor_config.override_base_feature_extractor_hyperparams)
if feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))
feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
feature_extractor = feature_extractor_class(
is_training, depth_multiplier, min_depth, pad_to_multiple,
conv_hyperparams, reuse_weights, use_explicit_padding, use_depthwise,
override_base_feature_extractor_hyperparams)
# Extra configs for LSTM-SSD.
feature_extractor.lstm_state_depth = lstm_config.lstm_state_depth
feature_extractor.flatten_state = lstm_config.flatten_state
feature_extractor.clip_state = lstm_config.clip_state
feature_extractor.scale_state = lstm_config.scale_state
feature_extractor.is_quantized = lstm_config.is_quantized
feature_extractor.low_res = lstm_config.low_res
# Extra configs for interleaved LSTM-SSD.
if 'interleaved' in feature_extractor_config.type:
feature_extractor.pre_bottleneck = lstm_config.pre_bottleneck
feature_extractor.depth_multipliers = lstm_config.depth_multipliers
if is_training:
feature_extractor.interleave_method = lstm_config.train_interleave_method
else:
feature_extractor.interleave_method = lstm_config.eval_interleave_method
return feature_extractor
def _build_lstm_model(ssd_config, lstm_config, is_training):
"""Builds an LSTM detection model based on the model config.
Args:
ssd_config: A ssd.proto object containing the config for the desired
LSTMSSDMetaArch.
lstm_config: LstmModel config proto that specifies LSTM train/eval configs.
is_training: True if this model is being built for training purposes.
Returns:
LSTMSSDMetaArch based on the config.
Raises:
ValueError: If ssd_config.type is not recognized (i.e. not registered in
model_class_map), or if lstm_config.interleave_strategy is not recognized.
ValueError: If unroll_length is not specified in the config file.
"""
feature_extractor = _build_lstm_feature_extractor(
ssd_config.feature_extractor, is_training, lstm_config)
box_coder = box_coder_builder.build(ssd_config.box_coder)
matcher = matcher_builder.build(ssd_config.matcher)
region_similarity_calculator = sim_calc.build(
ssd_config.similarity_calculator)
num_classes = ssd_config.num_classes
ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build,
ssd_config.box_predictor,
is_training, num_classes)
anchor_generator = anchor_generator_builder.build(ssd_config.anchor_generator)
image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
ssd_config.post_processing)
(classification_loss, localization_loss, classification_weight,
localization_weight, miner, _, _) = losses_builder.build(ssd_config.loss)
normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
encode_background_as_zeros = ssd_config.encode_background_as_zeros
negative_class_weight = ssd_config.negative_class_weight
# Extra configs for lstm unroll length.
unroll_length = None
if 'lstm' in ssd_config.feature_extractor.type:
if is_training:
unroll_length = lstm_config.train_unroll_length
else:
unroll_length = lstm_config.eval_unroll_length
if unroll_length is None:
raise ValueError('No unroll length found in the config file')
target_assigner_instance = target_assigner.TargetAssigner(
region_similarity_calculator,
matcher,
box_coder,
negative_class_weight=negative_class_weight)
lstm_model = lstm_ssd_meta_arch.LSTMSSDMetaArch(
is_training=is_training,
anchor_generator=anchor_generator,
box_predictor=ssd_box_predictor,
box_coder=box_coder,
feature_extractor=feature_extractor,
encode_background_as_zeros=encode_background_as_zeros,
image_resizer_fn=image_resizer_fn,
non_max_suppression_fn=non_max_suppression_fn,
score_conversion_fn=score_conversion_fn,
classification_loss=classification_loss,
localization_loss=localization_loss,
classification_loss_weight=classification_weight,
localization_loss_weight=localization_weight,
normalize_loss_by_num_matches=normalize_loss_by_num_matches,
hard_example_miner=miner,
unroll_length=unroll_length,
target_assigner_instance=target_assigner_instance)
return lstm_model