forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_lib_v2.py
1169 lines (1004 loc) · 48.8 KB
/
model_lib_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Constructs model, inputs, and training environment."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import os
import pprint
import time
import numpy as np
import tensorflow.compat.v1 as tf
from object_detection import eval_util
from object_detection import inputs
from object_detection import model_lib
from object_detection.builders import optimizer_builder
from object_detection.core import standard_fields as fields
from object_detection.protos import train_pb2
from object_detection.utils import config_util
from object_detection.utils import label_map_util
from object_detection.utils import ops
from object_detection.utils import variables_helper
from object_detection.utils import visualization_utils as vutils
MODEL_BUILD_UTIL_MAP = model_lib.MODEL_BUILD_UTIL_MAP
NUM_STEPS_PER_ITERATION = 100
LOG_EVERY = 100
RESTORE_MAP_ERROR_TEMPLATE = (
'Since we are restoring a v2 style checkpoint'
' restore_map was expected to return a (str -> Model) mapping,'
' but we received a ({} -> {}) mapping instead.'
)
def _compute_losses_and_predictions_dicts(
model, features, labels, training_step=None,
add_regularization_loss=True):
"""Computes the losses dict and predictions dict for a model on inputs.
Args:
model: a DetectionModel (based on Keras).
features: Dictionary of feature tensors from the input dataset.
Should be in the format output by `inputs.train_input` and
`inputs.eval_input`.
features[fields.InputDataFields.image] is a [batch_size, H, W, C]
float32 tensor with preprocessed images.
features[HASH_KEY] is a [batch_size] int32 tensor representing unique
identifiers for the images.
features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
int32 tensor representing the true image shapes, as preprocessed
images could be padded.
features[fields.InputDataFields.original_image] (optional) is a
[batch_size, H, W, C] float32 tensor with original images.
labels: A dictionary of groundtruth tensors post-unstacking. The original
labels are of the form returned by `inputs.train_input` and
`inputs.eval_input`. The shapes may have been modified by unstacking with
`model_lib.unstack_batch`. However, the dictionary includes the following
fields.
labels[fields.InputDataFields.num_groundtruth_boxes] is a
int32 tensor indicating the number of valid groundtruth boxes
per image.
labels[fields.InputDataFields.groundtruth_boxes] is a float32 tensor
containing the corners of the groundtruth boxes.
labels[fields.InputDataFields.groundtruth_classes] is a float32
one-hot tensor of classes.
labels[fields.InputDataFields.groundtruth_weights] is a float32 tensor
containing groundtruth weights for the boxes.
-- Optional --
labels[fields.InputDataFields.groundtruth_instance_masks] is a
float32 tensor containing only binary values, which represent
instance masks for objects.
labels[fields.InputDataFields.groundtruth_instance_mask_weights] is a
float32 tensor containing weights for the instance masks.
labels[fields.InputDataFields.groundtruth_keypoints] is a
float32 tensor containing keypoints for each box.
labels[fields.InputDataFields.groundtruth_dp_num_points] is an int32
tensor with the number of sampled DensePose points per object.
labels[fields.InputDataFields.groundtruth_dp_part_ids] is an int32
tensor with the DensePose part ids (0-indexed) per object.
labels[fields.InputDataFields.groundtruth_dp_surface_coords] is a
float32 tensor with the DensePose surface coordinates.
labels[fields.InputDataFields.groundtruth_group_of] is a tf.bool tensor
containing group_of annotations.
labels[fields.InputDataFields.groundtruth_labeled_classes] is a float32
k-hot tensor of classes.
labels[fields.InputDataFields.groundtruth_track_ids] is a int32
tensor of track IDs.
labels[fields.InputDataFields.groundtruth_keypoint_depths] is a
float32 tensor containing keypoint depths information.
labels[fields.InputDataFields.groundtruth_keypoint_depth_weights] is a
float32 tensor containing the weights of the keypoint depth feature.
training_step: int, the current training step.
add_regularization_loss: Whether or not to include the model's
regularization loss in the losses dictionary.
Returns:
A tuple containing the losses dictionary (with the total loss under
the key 'Loss/total_loss'), and the predictions dictionary produced by
`model.predict`.
"""
model_lib.provide_groundtruth(model, labels, training_step=training_step)
preprocessed_images = features[fields.InputDataFields.image]
prediction_dict = model.predict(
preprocessed_images,
features[fields.InputDataFields.true_image_shape],
**model.get_side_inputs(features))
prediction_dict = ops.bfloat16_to_float32_nested(prediction_dict)
losses_dict = model.loss(
prediction_dict, features[fields.InputDataFields.true_image_shape])
losses = [loss_tensor for loss_tensor in losses_dict.values()]
if add_regularization_loss:
# TODO(kaftan): As we figure out mixed precision & bfloat 16, we may
## need to convert these regularization losses from bfloat16 to float32
## as well.
regularization_losses = model.regularization_losses()
if regularization_losses:
regularization_losses = ops.bfloat16_to_float32_nested(
regularization_losses)
regularization_loss = tf.add_n(
regularization_losses, name='regularization_loss')
losses.append(regularization_loss)
losses_dict['Loss/regularization_loss'] = regularization_loss
total_loss = tf.add_n(losses, name='total_loss')
losses_dict['Loss/total_loss'] = total_loss
return losses_dict, prediction_dict
def _ensure_model_is_built(model, input_dataset, unpad_groundtruth_tensors):
"""Ensures that model variables are all built, by running on a dummy input.
Args:
model: A DetectionModel to be built.
input_dataset: The tf.data Dataset the model is being trained on. Needed to
get the shapes for the dummy loss computation.
unpad_groundtruth_tensors: A parameter passed to unstack_batch.
"""
features, labels = iter(input_dataset).next()
@tf.function
def _dummy_computation_fn(features, labels):
model._is_training = False # pylint: disable=protected-access
tf.keras.backend.set_learning_phase(False)
labels = model_lib.unstack_batch(
labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)
return _compute_losses_and_predictions_dicts(model, features, labels,
training_step=0)
strategy = tf.compat.v2.distribute.get_strategy()
if hasattr(tf.distribute.Strategy, 'run'):
strategy.run(
_dummy_computation_fn, args=(
features,
labels,
))
else:
strategy.experimental_run_v2(
_dummy_computation_fn, args=(
features,
labels,
))
def normalize_dict(values_dict, num_replicas):
num_replicas = tf.constant(num_replicas, dtype=tf.float32)
return {key: tf.math.divide(loss, num_replicas) for key, loss
in values_dict.items()}
def reduce_dict(strategy, reduction_dict, reduction_op):
# TODO(anjalisridhar): explore if it is safe to remove the # num_replicas
# scaling of the loss and switch this to a ReduceOp.Mean
return {
name: strategy.reduce(reduction_op, loss, axis=None)
for name, loss in reduction_dict.items()
}
# TODO(kaftan): Explore removing learning_rate from this method & returning
## The full losses dict instead of just total_loss, then doing all summaries
## saving in a utility method called by the outer training loop.
# TODO(kaftan): Explore adding gradient summaries
def eager_train_step(detection_model,
features,
labels,
unpad_groundtruth_tensors,
optimizer,
training_step,
add_regularization_loss=True,
clip_gradients_value=None,
num_replicas=1.0):
"""Process a single training batch.
This method computes the loss for the model on a single training batch,
while tracking the gradients with a gradient tape. It then updates the
model variables with the optimizer, clipping the gradients if
clip_gradients_value is present.
This method can run eagerly or inside a tf.function.
Args:
detection_model: A DetectionModel (based on Keras) to train.
features: Dictionary of feature tensors from the input dataset.
Should be in the format output by `inputs.train_input.
features[fields.InputDataFields.image] is a [batch_size, H, W, C]
float32 tensor with preprocessed images.
features[HASH_KEY] is a [batch_size] int32 tensor representing unique
identifiers for the images.
features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
int32 tensor representing the true image shapes, as preprocessed
images could be padded.
features[fields.InputDataFields.original_image] (optional, not used
during training) is a
[batch_size, H, W, C] float32 tensor with original images.
labels: A dictionary of groundtruth tensors. This method unstacks
these labels using model_lib.unstack_batch. The stacked labels are of
the form returned by `inputs.train_input` and `inputs.eval_input`.
labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size]
int32 tensor indicating the number of valid groundtruth boxes
per image.
labels[fields.InputDataFields.groundtruth_boxes] is a
[batch_size, num_boxes, 4] float32 tensor containing the corners of
the groundtruth boxes.
labels[fields.InputDataFields.groundtruth_classes] is a
[batch_size, num_boxes, num_classes] float32 one-hot tensor of
classes. num_classes includes the background class.
labels[fields.InputDataFields.groundtruth_weights] is a
[batch_size, num_boxes] float32 tensor containing groundtruth weights
for the boxes.
-- Optional --
labels[fields.InputDataFields.groundtruth_instance_masks] is a
[batch_size, num_boxes, H, W] float32 tensor containing only binary
values, which represent instance masks for objects.
labels[fields.InputDataFields.groundtruth_instance_mask_weights] is a
[batch_size, num_boxes] float32 tensor containing weights for the
instance masks.
labels[fields.InputDataFields.groundtruth_keypoints] is a
[batch_size, num_boxes, num_keypoints, 2] float32 tensor containing
keypoints for each box.
labels[fields.InputDataFields.groundtruth_dp_num_points] is a
[batch_size, num_boxes] int32 tensor with the number of DensePose
sampled points per instance.
labels[fields.InputDataFields.groundtruth_dp_part_ids] is a
[batch_size, num_boxes, max_sampled_points] int32 tensor with the
part ids (0-indexed) for each instance.
labels[fields.InputDataFields.groundtruth_dp_surface_coords] is a
[batch_size, num_boxes, max_sampled_points, 4] float32 tensor with the
surface coordinates for each point. Each surface coordinate is of the
form (y, x, v, u) where (y, x) are normalized image locations and
(v, u) are part-relative normalized surface coordinates.
labels[fields.InputDataFields.groundtruth_labeled_classes] is a float32
k-hot tensor of classes.
labels[fields.InputDataFields.groundtruth_track_ids] is a int32
tensor of track IDs.
labels[fields.InputDataFields.groundtruth_keypoint_depths] is a
float32 tensor containing keypoint depths information.
labels[fields.InputDataFields.groundtruth_keypoint_depth_weights] is a
float32 tensor containing the weights of the keypoint depth feature.
unpad_groundtruth_tensors: A parameter passed to unstack_batch.
optimizer: The training optimizer that will update the variables.
training_step: int, the training step number.
add_regularization_loss: Whether or not to include the model's
regularization loss in the losses dictionary.
clip_gradients_value: If this is present, clip the gradients global norm
at this value using `tf.clip_by_global_norm`.
num_replicas: The number of replicas in the current distribution strategy.
This is used to scale the total loss so that training in a distribution
strategy works correctly.
Returns:
The total loss observed at this training step
"""
# """Execute a single training step in the TF v2 style loop."""
is_training = True
detection_model._is_training = is_training # pylint: disable=protected-access
tf.keras.backend.set_learning_phase(is_training)
labels = model_lib.unstack_batch(
labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)
with tf.GradientTape() as tape:
losses_dict, _ = _compute_losses_and_predictions_dicts(
detection_model, features, labels,
training_step=training_step,
add_regularization_loss=add_regularization_loss)
losses_dict = normalize_dict(losses_dict, num_replicas)
trainable_variables = detection_model.trainable_variables
total_loss = losses_dict['Loss/total_loss']
gradients = tape.gradient(total_loss, trainable_variables)
if clip_gradients_value:
gradients, _ = tf.clip_by_global_norm(gradients, clip_gradients_value)
optimizer.apply_gradients(zip(gradients, trainable_variables))
return losses_dict
def validate_tf_v2_checkpoint_restore_map(checkpoint_restore_map):
"""Ensure that given dict is a valid TF v2 style restore map.
Args:
checkpoint_restore_map: A nested dict mapping strings to
tf.keras.Model objects.
Raises:
ValueError: If they keys in checkpoint_restore_map are not strings or if
the values are not keras Model objects.
"""
for key, value in checkpoint_restore_map.items():
if not (isinstance(key, str) and
(isinstance(value, tf.Module)
or isinstance(value, tf.train.Checkpoint))):
if isinstance(key, str) and isinstance(value, dict):
validate_tf_v2_checkpoint_restore_map(value)
else:
raise TypeError(
RESTORE_MAP_ERROR_TEMPLATE.format(key.__class__.__name__,
value.__class__.__name__))
def is_object_based_checkpoint(checkpoint_path):
"""Returns true if `checkpoint_path` points to an object-based checkpoint."""
var_names = [var[0] for var in tf.train.list_variables(checkpoint_path)]
return '_CHECKPOINTABLE_OBJECT_GRAPH' in var_names
def load_fine_tune_checkpoint(model, checkpoint_path, checkpoint_type,
checkpoint_version, run_model_on_dummy_input,
input_dataset, unpad_groundtruth_tensors):
"""Load a fine tuning classification or detection checkpoint.
To make sure the model variables are all built, this method first executes
the model by computing a dummy loss. (Models might not have built their
variables before their first execution)
It then loads an object-based classification or detection checkpoint.
This method updates the model in-place and does not return a value.
Args:
model: A DetectionModel (based on Keras) to load a fine-tuning
checkpoint for.
checkpoint_path: Directory with checkpoints file or path to checkpoint.
checkpoint_type: Whether to restore from a full detection
checkpoint (with compatible variable names) or to restore from a
classification checkpoint for initialization prior to training.
Valid values: `detection`, `classification`.
checkpoint_version: train_pb2.CheckpointVersion.V1 or V2 enum indicating
whether to load checkpoints in V1 style or V2 style. In this binary
we only support V2 style (object-based) checkpoints.
run_model_on_dummy_input: Whether to run the model on a dummy input in order
to ensure that all model variables have been built successfully before
loading the fine_tune_checkpoint.
input_dataset: The tf.data Dataset the model is being trained on. Needed
to get the shapes for the dummy loss computation.
unpad_groundtruth_tensors: A parameter passed to unstack_batch.
Raises:
IOError: if `checkpoint_path` does not point at a valid object-based
checkpoint
ValueError: if `checkpoint_version` is not train_pb2.CheckpointVersion.V2
"""
if not is_object_based_checkpoint(checkpoint_path):
raise IOError('Checkpoint is expected to be an object-based checkpoint.')
if checkpoint_version == train_pb2.CheckpointVersion.V1:
raise ValueError('Checkpoint version should be V2')
if run_model_on_dummy_input:
_ensure_model_is_built(model, input_dataset, unpad_groundtruth_tensors)
restore_from_objects_dict = model.restore_from_objects(
fine_tune_checkpoint_type=checkpoint_type)
validate_tf_v2_checkpoint_restore_map(restore_from_objects_dict)
ckpt = tf.train.Checkpoint(**restore_from_objects_dict)
ckpt.restore(
checkpoint_path).expect_partial().assert_existing_objects_matched()
def get_filepath(strategy, filepath):
"""Get appropriate filepath for worker.
Args:
strategy: A tf.distribute.Strategy object.
filepath: A path to where the Checkpoint object is stored.
Returns:
A temporary filepath for non-chief workers to use or the original filepath
for the chief.
"""
if strategy.extended.should_checkpoint:
return filepath
else:
# TODO(vighneshb) Replace with the public API when TF exposes it.
task_id = strategy.extended._task_id # pylint:disable=protected-access
return os.path.join(filepath, 'temp_worker_{:03d}'.format(task_id))
def clean_temporary_directories(strategy, filepath):
"""Temporary directory clean up for MultiWorker Mirrored Strategy.
This is needed for all non-chief workers.
Args:
strategy: A tf.distribute.Strategy object.
filepath: The filepath for the temporary directory.
"""
if not strategy.extended.should_checkpoint:
if tf.io.gfile.exists(filepath) and tf.io.gfile.isdir(filepath):
tf.io.gfile.rmtree(filepath)
def train_loop(
pipeline_config_path,
model_dir,
config_override=None,
train_steps=None,
use_tpu=False,
save_final_config=False,
checkpoint_every_n=1000,
checkpoint_max_to_keep=7,
record_summaries=True,
performance_summary_exporter=None,
num_steps_per_iteration=NUM_STEPS_PER_ITERATION,
**kwargs):
"""Trains a model using eager + functions.
This method:
1. Processes the pipeline configs
2. (Optionally) saves the as-run config
3. Builds the model & optimizer
4. Gets the training input data
5. Loads a fine-tuning detection or classification checkpoint if requested
6. Loops over the train data, executing distributed training steps inside
tf.functions.
7. Checkpoints the model every `checkpoint_every_n` training steps.
8. Logs the training metrics as TensorBoard summaries.
Args:
pipeline_config_path: A path to a pipeline config file.
model_dir:
The directory to save checkpoints and summaries to.
config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to
override the config from `pipeline_config_path`.
train_steps: Number of training steps. If None, the number of training steps
is set from the `TrainConfig` proto.
use_tpu: Boolean, whether training and evaluation should run on TPU.
save_final_config: Whether to save final config (obtained after applying
overrides) to `model_dir`.
checkpoint_every_n:
Checkpoint every n training steps.
checkpoint_max_to_keep:
int, the number of most recent checkpoints to keep in the model directory.
record_summaries: Boolean, whether or not to record summaries defined by
the model or the training pipeline. This does not impact the summaries
of the loss values which are always recorded. Examples of summaries
that are controlled by this flag include:
- Image summaries of training images.
- Intermediate tensors which maybe logged by meta architectures.
performance_summary_exporter: function for exporting performance metrics.
num_steps_per_iteration: int, The number of training steps to perform
in each iteration.
**kwargs: Additional keyword arguments for configuration override.
"""
## Parse the configs
get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[
'get_configs_from_pipeline_file']
merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[
'merge_external_params_with_configs']
create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[
'create_pipeline_proto_from_configs']
steps_per_sec_list = []
configs = get_configs_from_pipeline_file(
pipeline_config_path, config_override=config_override)
kwargs.update({
'train_steps': train_steps,
'use_bfloat16': configs['train_config'].use_bfloat16 and use_tpu
})
configs = merge_external_params_with_configs(
configs, None, kwargs_dict=kwargs)
model_config = configs['model']
train_config = configs['train_config']
train_input_config = configs['train_input_config']
unpad_groundtruth_tensors = train_config.unpad_groundtruth_tensors
add_regularization_loss = train_config.add_regularization_loss
clip_gradients_value = None
if train_config.gradient_clipping_by_norm > 0:
clip_gradients_value = train_config.gradient_clipping_by_norm
# update train_steps from config but only when non-zero value is provided
if train_steps is None and train_config.num_steps != 0:
train_steps = train_config.num_steps
if kwargs['use_bfloat16']:
tf.compat.v2.keras.mixed_precision.set_global_policy('mixed_bfloat16')
if train_config.load_all_detection_checkpoint_vars:
raise ValueError('train_pb2.load_all_detection_checkpoint_vars '
'unsupported in TF2')
config_util.update_fine_tune_checkpoint_type(train_config)
fine_tune_checkpoint_type = train_config.fine_tune_checkpoint_type
fine_tune_checkpoint_version = train_config.fine_tune_checkpoint_version
# Write the as-run pipeline config to disk.
if save_final_config:
tf.logging.info('Saving pipeline config file to directory %s', model_dir)
pipeline_config_final = create_pipeline_proto_from_configs(configs)
config_util.save_pipeline_config(pipeline_config_final, model_dir)
# Build the model, optimizer, and training input
strategy = tf.compat.v2.distribute.get_strategy()
with strategy.scope():
detection_model = MODEL_BUILD_UTIL_MAP['detection_model_fn_base'](
model_config=model_config, is_training=True,
add_summaries=record_summaries)
def train_dataset_fn(input_context):
"""Callable to create train input."""
# Create the inputs.
train_input = inputs.train_input(
train_config=train_config,
train_input_config=train_input_config,
model_config=model_config,
model=detection_model,
input_context=input_context)
train_input = train_input.repeat()
return train_input
train_input = strategy.experimental_distribute_datasets_from_function(
train_dataset_fn)
global_step = tf.Variable(
0, trainable=False, dtype=tf.compat.v2.dtypes.int64, name='global_step',
aggregation=tf.compat.v2.VariableAggregation.ONLY_FIRST_REPLICA)
optimizer, (learning_rate,) = optimizer_builder.build(
train_config.optimizer, global_step=global_step)
# We run the detection_model on dummy inputs in order to ensure that the
# model and all its variables have been properly constructed. Specifically,
# this is currently necessary prior to (potentially) creating shadow copies
# of the model variables for the EMA optimizer.
if train_config.optimizer.use_moving_average:
_ensure_model_is_built(detection_model, train_input,
unpad_groundtruth_tensors)
optimizer.shadow_copy(detection_model)
if callable(learning_rate):
learning_rate_fn = learning_rate
else:
learning_rate_fn = lambda: learning_rate
## Train the model
# Get the appropriate filepath (temporary or not) based on whether the worker
# is the chief.
summary_writer_filepath = get_filepath(strategy,
os.path.join(model_dir, 'train'))
summary_writer = tf.compat.v2.summary.create_file_writer(
summary_writer_filepath)
with summary_writer.as_default():
with strategy.scope():
with tf.compat.v2.summary.record_if(
lambda: global_step % num_steps_per_iteration == 0):
# Load a fine-tuning checkpoint.
if train_config.fine_tune_checkpoint:
variables_helper.ensure_checkpoint_supported(
train_config.fine_tune_checkpoint, fine_tune_checkpoint_type,
model_dir)
load_fine_tune_checkpoint(
detection_model, train_config.fine_tune_checkpoint,
fine_tune_checkpoint_type, fine_tune_checkpoint_version,
train_config.run_fine_tune_checkpoint_dummy_computation,
train_input, unpad_groundtruth_tensors)
ckpt = tf.compat.v2.train.Checkpoint(
step=global_step, model=detection_model, optimizer=optimizer)
manager_dir = get_filepath(strategy, model_dir)
if not strategy.extended.should_checkpoint:
checkpoint_max_to_keep = 1
manager = tf.compat.v2.train.CheckpointManager(
ckpt, manager_dir, max_to_keep=checkpoint_max_to_keep)
# We use the following instead of manager.latest_checkpoint because
# manager_dir does not point to the model directory when we are running
# in a worker.
latest_checkpoint = tf.train.latest_checkpoint(model_dir)
ckpt.restore(latest_checkpoint)
def train_step_fn(features, labels):
"""Single train step."""
if record_summaries:
tf.compat.v2.summary.image(
name='train_input_images',
step=global_step,
data=features[fields.InputDataFields.image],
max_outputs=3)
losses_dict = eager_train_step(
detection_model,
features,
labels,
unpad_groundtruth_tensors,
optimizer,
training_step=global_step,
add_regularization_loss=add_regularization_loss,
clip_gradients_value=clip_gradients_value,
num_replicas=strategy.num_replicas_in_sync)
global_step.assign_add(1)
return losses_dict
def _sample_and_train(strategy, train_step_fn, data_iterator):
features, labels = data_iterator.next()
if hasattr(tf.distribute.Strategy, 'run'):
per_replica_losses_dict = strategy.run(
train_step_fn, args=(features, labels))
else:
per_replica_losses_dict = (
strategy.experimental_run_v2(
train_step_fn, args=(features, labels)))
return reduce_dict(
strategy, per_replica_losses_dict, tf.distribute.ReduceOp.SUM)
@tf.function
def _dist_train_step(data_iterator):
"""A distributed train step."""
if num_steps_per_iteration > 1:
for _ in tf.range(num_steps_per_iteration - 1):
# Following suggestion on yaqs/5402607292645376
with tf.name_scope(''):
_sample_and_train(strategy, train_step_fn, data_iterator)
return _sample_and_train(strategy, train_step_fn, data_iterator)
train_input_iter = iter(train_input)
if int(global_step.value()) == 0:
manager.save()
checkpointed_step = int(global_step.value())
logged_step = global_step.value()
last_step_time = time.time()
for _ in range(global_step.value(), train_steps,
num_steps_per_iteration):
losses_dict = _dist_train_step(train_input_iter)
time_taken = time.time() - last_step_time
last_step_time = time.time()
steps_per_sec = num_steps_per_iteration * 1.0 / time_taken
tf.compat.v2.summary.scalar(
'steps_per_sec', steps_per_sec, step=global_step)
steps_per_sec_list.append(steps_per_sec)
logged_dict = losses_dict.copy()
logged_dict['learning_rate'] = learning_rate_fn()
for key, val in logged_dict.items():
tf.compat.v2.summary.scalar(key, val, step=global_step)
if global_step.value() - logged_step >= LOG_EVERY:
logged_dict_np = {name: value.numpy() for name, value in
logged_dict.items()}
tf.logging.info(
'Step {} per-step time {:.3f}s'.format(
global_step.value(), time_taken / num_steps_per_iteration))
tf.logging.info(pprint.pformat(logged_dict_np, width=40))
logged_step = global_step.value()
if ((int(global_step.value()) - checkpointed_step) >=
checkpoint_every_n):
manager.save()
checkpointed_step = int(global_step.value())
# Remove the checkpoint directories of the non-chief workers that
# MultiWorkerMirroredStrategy forces us to save during sync distributed
# training.
clean_temporary_directories(strategy, manager_dir)
clean_temporary_directories(strategy, summary_writer_filepath)
# TODO(pkanwar): add accuracy metrics.
if performance_summary_exporter is not None:
metrics = {
'steps_per_sec': np.mean(steps_per_sec_list),
'steps_per_sec_p50': np.median(steps_per_sec_list),
'steps_per_sec_max': max(steps_per_sec_list),
'last_batch_loss': float(losses_dict['Loss/total_loss'])
}
mixed_precision = 'bf16' if kwargs['use_bfloat16'] else 'fp32'
performance_summary_exporter(metrics, mixed_precision)
def prepare_eval_dict(detections, groundtruth, features):
"""Prepares eval dictionary containing detections and groundtruth.
Takes in `detections` from the model, `groundtruth` and `features` returned
from the eval tf.data.dataset and creates a dictionary of tensors suitable
for detection eval modules.
Args:
detections: A dictionary of tensors returned by `model.postprocess`.
groundtruth: `inputs.eval_input` returns an eval dataset of (features,
labels) tuple. `groundtruth` must be set to `labels`.
Please note that:
* fields.InputDataFields.groundtruth_classes must be 0-indexed and
in its 1-hot representation.
* fields.InputDataFields.groundtruth_verified_neg_classes must be
0-indexed and in its multi-hot repesentation.
* fields.InputDataFields.groundtruth_not_exhaustive_classes must be
0-indexed and in its multi-hot repesentation.
* fields.InputDataFields.groundtruth_labeled_classes must be
0-indexed and in its multi-hot repesentation.
features: `inputs.eval_input` returns an eval dataset of (features, labels)
tuple. This argument must be set to a dictionary containing the following
keys and their corresponding values from `features` --
* fields.InputDataFields.image
* fields.InputDataFields.original_image
* fields.InputDataFields.original_image_spatial_shape
* fields.InputDataFields.true_image_shape
* inputs.HASH_KEY
Returns:
eval_dict: A dictionary of tensors to pass to eval module.
class_agnostic: Whether to evaluate detection in class agnostic mode.
"""
groundtruth_boxes = groundtruth[fields.InputDataFields.groundtruth_boxes]
groundtruth_boxes_shape = tf.shape(groundtruth_boxes)
# For class-agnostic models, groundtruth one-hot encodings collapse to all
# ones.
class_agnostic = (
fields.DetectionResultFields.detection_classes not in detections)
if class_agnostic:
groundtruth_classes_one_hot = tf.ones(
[groundtruth_boxes_shape[0], groundtruth_boxes_shape[1], 1])
else:
groundtruth_classes_one_hot = groundtruth[
fields.InputDataFields.groundtruth_classes]
label_id_offset = 1 # Applying label id offset (b/63711816)
groundtruth_classes = (
tf.argmax(groundtruth_classes_one_hot, axis=2) + label_id_offset)
groundtruth[fields.InputDataFields.groundtruth_classes] = groundtruth_classes
label_id_offset_paddings = tf.constant([[0, 0], [1, 0]])
if fields.InputDataFields.groundtruth_verified_neg_classes in groundtruth:
groundtruth[
fields.InputDataFields.groundtruth_verified_neg_classes] = tf.pad(
groundtruth[
fields.InputDataFields.groundtruth_verified_neg_classes],
label_id_offset_paddings)
if fields.InputDataFields.groundtruth_not_exhaustive_classes in groundtruth:
groundtruth[
fields.InputDataFields.groundtruth_not_exhaustive_classes] = tf.pad(
groundtruth[
fields.InputDataFields.groundtruth_not_exhaustive_classes],
label_id_offset_paddings)
if fields.InputDataFields.groundtruth_labeled_classes in groundtruth:
groundtruth[fields.InputDataFields.groundtruth_labeled_classes] = tf.pad(
groundtruth[fields.InputDataFields.groundtruth_labeled_classes],
label_id_offset_paddings)
use_original_images = fields.InputDataFields.original_image in features
if use_original_images:
eval_images = features[fields.InputDataFields.original_image]
true_image_shapes = features[fields.InputDataFields.true_image_shape][:, :3]
original_image_spatial_shapes = features[
fields.InputDataFields.original_image_spatial_shape]
else:
eval_images = features[fields.InputDataFields.image]
true_image_shapes = None
original_image_spatial_shapes = None
eval_dict = eval_util.result_dict_for_batched_example(
eval_images,
features[inputs.HASH_KEY],
detections,
groundtruth,
class_agnostic=class_agnostic,
scale_to_absolute=True,
original_image_spatial_shapes=original_image_spatial_shapes,
true_image_shapes=true_image_shapes)
return eval_dict, class_agnostic
def concat_replica_results(tensor_dict):
new_tensor_dict = {}
for key, values in tensor_dict.items():
new_tensor_dict[key] = tf.concat(values, axis=0)
return new_tensor_dict
def eager_eval_loop(
detection_model,
configs,
eval_dataset,
use_tpu=False,
postprocess_on_cpu=False,
global_step=None,
):
"""Evaluate the model eagerly on the evaluation dataset.
This method will compute the evaluation metrics specified in the configs on
the entire evaluation dataset, then return the metrics. It will also log
the metrics to TensorBoard.
Args:
detection_model: A DetectionModel (based on Keras) to evaluate.
configs: Object detection configs that specify the evaluators that should
be used, as well as whether regularization loss should be included and
if bfloat16 should be used on TPUs.
eval_dataset: Dataset containing evaluation data.
use_tpu: Whether a TPU is being used to execute the model for evaluation.
postprocess_on_cpu: Whether model postprocessing should happen on
the CPU when using a TPU to execute the model.
global_step: A variable containing the training step this model was trained
to. Used for logging purposes.
Returns:
A dict of evaluation metrics representing the results of this evaluation.
"""
del postprocess_on_cpu
train_config = configs['train_config']
eval_input_config = configs['eval_input_config']
eval_config = configs['eval_config']
add_regularization_loss = train_config.add_regularization_loss
is_training = False
detection_model._is_training = is_training # pylint: disable=protected-access
tf.keras.backend.set_learning_phase(is_training)
evaluator_options = eval_util.evaluator_options_from_eval_config(
eval_config)
batch_size = eval_config.batch_size
class_agnostic_category_index = (
label_map_util.create_class_agnostic_category_index())
class_agnostic_evaluators = eval_util.get_evaluators(
eval_config,
list(class_agnostic_category_index.values()),
evaluator_options)
class_aware_evaluators = None
if eval_input_config.label_map_path:
class_aware_category_index = (
label_map_util.create_category_index_from_labelmap(
eval_input_config.label_map_path))
class_aware_evaluators = eval_util.get_evaluators(
eval_config,
list(class_aware_category_index.values()),
evaluator_options)
evaluators = None
loss_metrics = {}
@tf.function
def compute_eval_dict(features, labels):
"""Compute the evaluation result on an image."""
# For evaling on train data, it is necessary to check whether groundtruth
# must be unpadded.
boxes_shape = (
labels[fields.InputDataFields.groundtruth_boxes].get_shape().as_list())
unpad_groundtruth_tensors = (boxes_shape[1] is not None
and not use_tpu
and batch_size == 1)
groundtruth_dict = labels
labels = model_lib.unstack_batch(
labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)
losses_dict, prediction_dict = _compute_losses_and_predictions_dicts(
detection_model, features, labels, training_step=None,
add_regularization_loss=add_regularization_loss)
prediction_dict = detection_model.postprocess(
prediction_dict, features[fields.InputDataFields.true_image_shape])
eval_features = {
fields.InputDataFields.image:
features[fields.InputDataFields.image],
fields.InputDataFields.original_image:
features[fields.InputDataFields.original_image],
fields.InputDataFields.original_image_spatial_shape:
features[fields.InputDataFields.original_image_spatial_shape],
fields.InputDataFields.true_image_shape:
features[fields.InputDataFields.true_image_shape],
inputs.HASH_KEY: features[inputs.HASH_KEY],
}
return losses_dict, prediction_dict, groundtruth_dict, eval_features
agnostic_categories = label_map_util.create_class_agnostic_category_index()
per_class_categories = label_map_util.create_category_index_from_labelmap(
eval_input_config.label_map_path)
keypoint_edges = [
(kp.start, kp.end) for kp in eval_config.keypoint_edge]
strategy = tf.compat.v2.distribute.get_strategy()
for i, (features, labels) in enumerate(eval_dataset):
try:
(losses_dict, prediction_dict, groundtruth_dict,
eval_features) = strategy.run(
compute_eval_dict, args=(features, labels))
except Exception as exc: # pylint:disable=broad-except
tf.logging.info('Encountered %s exception.', exc)
tf.logging.info('A replica probably exhausted all examples. Skipping '
'pending examples on other replicas.')
break
(local_prediction_dict, local_groundtruth_dict,
local_eval_features) = tf.nest.map_structure(
strategy.experimental_local_results,
[prediction_dict, groundtruth_dict, eval_features])
local_prediction_dict = concat_replica_results(local_prediction_dict)
local_groundtruth_dict = concat_replica_results(local_groundtruth_dict)
local_eval_features = concat_replica_results(local_eval_features)
eval_dict, class_agnostic = prepare_eval_dict(local_prediction_dict,
local_groundtruth_dict,
local_eval_features)
for loss_key, loss_tensor in iter(losses_dict.items()):
losses_dict[loss_key] = strategy.reduce(tf.distribute.ReduceOp.MEAN,
loss_tensor, None)
if class_agnostic:
category_index = agnostic_categories
else:
category_index = per_class_categories
if i % 100 == 0:
tf.logging.info('Finished eval step %d', i)
use_original_images = fields.InputDataFields.original_image in features
if (use_original_images and i < eval_config.num_visualizations):
sbys_image_list = vutils.draw_side_by_side_evaluation_image(
eval_dict,
category_index=category_index,
max_boxes_to_draw=eval_config.max_num_boxes_to_visualize,
min_score_thresh=eval_config.min_score_threshold,
use_normalized_coordinates=False,
keypoint_edges=keypoint_edges or None)
for j, sbys_image in enumerate(sbys_image_list):
tf.compat.v2.summary.image(
name='eval_side_by_side_{}_{}'.format(i, j),
step=global_step,
data=sbys_image,
max_outputs=eval_config.num_visualizations)
if eval_util.has_densepose(eval_dict):
dp_image_list = vutils.draw_densepose_visualizations(
eval_dict)
for j, dp_image in enumerate(dp_image_list):
tf.compat.v2.summary.image(
name='densepose_detections_{}_{}'.format(i, j),
step=global_step,
data=dp_image,
max_outputs=eval_config.num_visualizations)
if evaluators is None:
if class_agnostic:
evaluators = class_agnostic_evaluators
else:
evaluators = class_aware_evaluators
for evaluator in evaluators:
evaluator.add_eval_dict(eval_dict)