forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontroller.py
executable file
·461 lines (380 loc) · 16.2 KB
/
controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Controller coordinates sampling and training model.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import xrange
import tensorflow as tf
import numpy as np
import pickle
import random
flags = tf.flags
gfile = tf.gfile
FLAGS = flags.FLAGS
def find_best_eps_lambda(rewards, lengths):
"""Find the best lambda given a desired epsilon = FLAGS.max_divergence."""
# perhaps not the best way to do this
desired_div = FLAGS.max_divergence * np.mean(lengths)
def calc_divergence(eps_lambda):
max_reward = np.max(rewards)
logz = (max_reward / eps_lambda +
np.log(np.mean(np.exp((rewards - max_reward) / eps_lambda))))
exprr = np.mean(np.exp(rewards / eps_lambda - logz) *
rewards / eps_lambda)
return exprr - logz
left = 0.0
right = 1000.0
if len(rewards) <= 8:
return (left + right) / 2
num_iter = max(4, 1 + int(np.log((right - left) / 0.1) / np.log(2.0)))
for _ in xrange(num_iter):
mid = (left + right) / 2
cur_div = calc_divergence(mid)
if cur_div > desired_div:
left = mid
else:
right = mid
return (left + right) / 2
class Controller(object):
def __init__(self, env, env_spec, internal_dim,
use_online_batch=True,
batch_by_steps=False,
unify_episodes=False,
replay_batch_size=None,
max_step=None,
cutoff_agent=1,
save_trajectories_file=None,
use_trust_region=False,
use_value_opt=False,
update_eps_lambda=False,
prioritize_by='rewards',
get_model=None,
get_replay_buffer=None,
get_buffer_seeds=None):
self.env = env
self.env_spec = env_spec
self.internal_dim = internal_dim
self.use_online_batch = use_online_batch
self.batch_by_steps = batch_by_steps
self.unify_episodes = unify_episodes
self.replay_batch_size = replay_batch_size
self.max_step = max_step
self.cutoff_agent = cutoff_agent
self.save_trajectories_file = save_trajectories_file
self.use_trust_region = use_trust_region
self.use_value_opt = use_value_opt
self.update_eps_lambda = update_eps_lambda
self.prioritize_by = prioritize_by
self.model = get_model()
self.replay_buffer = get_replay_buffer()
self.seed_replay_buffer(get_buffer_seeds())
self.internal_state = np.array([self.initial_internal_state()] *
len(self.env))
self.last_obs = self.env_spec.initial_obs(len(self.env))
self.last_act = self.env_spec.initial_act(len(self.env))
self.last_pad = np.zeros(len(self.env))
self.start_episode = np.array([True] * len(self.env))
self.step_count = np.array([0] * len(self.env))
self.episode_running_rewards = np.zeros(len(self.env))
self.episode_running_lengths = np.zeros(len(self.env))
self.episode_rewards = []
self.greedy_episode_rewards = []
self.episode_lengths = []
self.total_rewards = []
self.best_batch_rewards = None
def setup(self, train=True):
self.model.setup(train=train)
def initial_internal_state(self):
return np.zeros(self.model.policy.rnn_state_dim)
def _sample_episodes(self, sess, greedy=False):
"""Sample episodes from environment using model."""
# reset environments as necessary
obs_after_reset = self.env.reset_if(self.start_episode)
for i, obs in enumerate(obs_after_reset):
if obs is not None:
self.step_count[i] = 0
self.internal_state[i] = self.initial_internal_state()
for j in xrange(len(self.env_spec.obs_dims)):
self.last_obs[j][i] = obs[j]
for j in xrange(len(self.env_spec.act_dims)):
self.last_act[j][i] = -1
self.last_pad[i] = 0
# maintain episode as a single unit if the last sampling
# batch ended before the episode was terminated
if self.unify_episodes:
assert len(obs_after_reset) == 1
new_ep = obs_after_reset[0] is not None
else:
new_ep = True
self.start_id = 0 if new_ep else len(self.all_obs[:])
initial_state = self.internal_state
all_obs = [] if new_ep else self.all_obs[:]
all_act = ([self.last_act] if new_ep else self.all_act[:])
all_pad = [] if new_ep else self.all_pad[:]
rewards = [] if new_ep else self.rewards[:]
# start stepping in the environments
step = 0
while not self.env.all_done():
self.step_count += 1 - np.array(self.env.dones)
next_internal_state, sampled_actions = self.model.sample_step(
sess, self.last_obs, self.internal_state, self.last_act,
greedy=greedy)
env_actions = self.env_spec.convert_actions_to_env(sampled_actions)
next_obs, reward, next_dones, _ = self.env.step(env_actions)
all_obs.append(self.last_obs)
all_act.append(sampled_actions)
all_pad.append(self.last_pad)
rewards.append(reward)
self.internal_state = next_internal_state
self.last_obs = next_obs
self.last_act = sampled_actions
self.last_pad = np.array(next_dones).astype('float32')
step += 1
if self.max_step and step >= self.max_step:
break
self.all_obs = all_obs[:]
self.all_act = all_act[:]
self.all_pad = all_pad[:]
self.rewards = rewards[:]
# append final observation
all_obs.append(self.last_obs)
return initial_state, all_obs, all_act, rewards, all_pad
def sample_episodes(self, sess, greedy=False):
"""Sample steps from the environment until we have enough for a batch."""
# check if last batch ended with episode that was not terminated
if self.unify_episodes:
self.all_new_ep = self.start_episode[0]
# sample episodes until we either have enough episodes or enough steps
episodes = []
total_steps = 0
while total_steps < self.max_step * len(self.env):
(initial_state,
observations, actions, rewards,
pads) = self._sample_episodes(sess, greedy=greedy)
observations = list(zip(*observations))
actions = list(zip(*actions))
terminated = np.array(self.env.dones)
self.total_rewards = np.sum(np.array(rewards[self.start_id:]) *
(1 - np.array(pads[self.start_id:])), axis=0)
self.episode_running_rewards *= 1 - self.start_episode
self.episode_running_lengths *= 1 - self.start_episode
self.episode_running_rewards += self.total_rewards
self.episode_running_lengths += np.sum(1 - np.array(pads[self.start_id:]), axis=0)
episodes.extend(self.convert_from_batched_episodes(
initial_state, observations, actions, rewards,
terminated, pads))
total_steps += np.sum(1 - np.array(pads))
# set next starting episodes
self.start_episode = np.logical_or(terminated,
self.step_count >= self.cutoff_agent)
episode_rewards = self.episode_running_rewards[self.start_episode].tolist()
self.episode_rewards.extend(episode_rewards)
self.episode_lengths.extend(self.episode_running_lengths[self.start_episode].tolist())
self.episode_rewards = self.episode_rewards[-100:]
self.episode_lengths = self.episode_lengths[-100:]
if (self.save_trajectories_file is not None and
(self.best_batch_rewards is None or
np.mean(self.total_rewards) > self.best_batch_rewards)):
self.best_batch_rewards = np.mean(self.total_rewards)
my_episodes = self.convert_from_batched_episodes(
initial_state, observations, actions, rewards,
terminated, pads)
with gfile.GFile(self.save_trajectories_file, 'w') as f:
pickle.dump(my_episodes, f)
if not self.batch_by_steps:
return (initial_state,
observations, actions, rewards,
terminated, pads)
return self.convert_to_batched_episodes(episodes)
def _train(self, sess,
observations, initial_state, actions,
rewards, terminated, pads):
"""Train model using batch."""
avg_episode_reward = np.mean(self.episode_rewards)
greedy_episode_reward = (np.mean(self.greedy_episode_rewards)
if self.greedy_episode_rewards else
avg_episode_reward)
loss, summary = None, None
if self.use_trust_region:
# use trust region to optimize policy
loss, _, summary = self.model.trust_region_step(
sess,
observations, initial_state, actions,
rewards, terminated, pads,
avg_episode_reward=avg_episode_reward,
greedy_episode_reward=greedy_episode_reward)
else: # otherwise use simple gradient descent on policy
loss, _, summary = self.model.train_step(
sess,
observations, initial_state, actions,
rewards, terminated, pads,
avg_episode_reward=avg_episode_reward,
greedy_episode_reward=greedy_episode_reward)
if self.use_value_opt: # optionally perform specific value optimization
self.model.fit_values(
sess,
observations, initial_state, actions,
rewards, terminated, pads)
return loss, summary
def train(self, sess):
"""Sample some episodes and train on some episodes."""
cur_step = sess.run(self.model.inc_global_step)
self.cur_step = cur_step
# on the first iteration, set target network close to online network
if self.cur_step == 0:
for _ in xrange(100):
sess.run(self.model.copy_op)
# on other iterations, just perform single target <-- online operation
sess.run(self.model.copy_op)
# sample from env
(initial_state,
observations, actions, rewards,
terminated, pads) = self.sample_episodes(sess)
# add to replay buffer
self.add_to_replay_buffer(
initial_state, observations, actions,
rewards, terminated, pads)
loss, summary = 0, None
# train on online batch
if self.use_online_batch:
loss, summary = self._train(
sess,
observations, initial_state, actions,
rewards, terminated, pads)
# update relative entropy coefficient
if self.update_eps_lambda:
episode_rewards = np.array(self.episode_rewards)
episode_lengths = np.array(self.episode_lengths)
eps_lambda = find_best_eps_lambda(
episode_rewards[-20:], episode_lengths[-20:])
sess.run(self.model.objective.assign_eps_lambda,
feed_dict={self.model.objective.new_eps_lambda: eps_lambda})
# train on replay batch
replay_batch, replay_probs = self.get_from_replay_buffer(
self.replay_batch_size)
if replay_batch:
(initial_state,
observations, actions, rewards,
terminated, pads) = replay_batch
loss, summary = self._train(
sess,
observations, initial_state, actions,
rewards, terminated, pads)
return loss, summary, self.total_rewards, self.episode_rewards
def eval(self, sess):
"""Use greedy sampling."""
(initial_state,
observations, actions, rewards,
pads, terminated) = self.sample_episodes(sess, greedy=True)
total_rewards = np.sum(np.array(rewards) * (1 - np.array(pads)), axis=0)
return total_rewards, self.episode_rewards
def convert_from_batched_episodes(
self, initial_state, observations, actions, rewards,
terminated, pads):
"""Convert time-major batch of episodes to batch-major list of episodes."""
rewards = np.array(rewards)
pads = np.array(pads)
observations = [np.array(obs) for obs in observations]
actions = [np.array(act) for act in actions]
total_rewards = np.sum(rewards * (1 - pads), axis=0)
total_length = np.sum(1 - pads, axis=0).astype('int32')
episodes = []
num_episodes = rewards.shape[1]
for i in xrange(num_episodes):
length = total_length[i]
ep_initial = initial_state[i]
ep_obs = [obs[:length + 1, i, ...] for obs in observations]
ep_act = [act[:length + 1, i, ...] for act in actions]
ep_rewards = rewards[:length, i]
episodes.append(
[ep_initial, ep_obs, ep_act, ep_rewards, terminated[i]])
return episodes
def convert_to_batched_episodes(self, episodes, max_length=None):
"""Convert batch-major list of episodes to time-major batch of episodes."""
lengths = [len(ep[-2]) for ep in episodes]
max_length = max_length or max(lengths)
new_episodes = []
for ep, length in zip(episodes, lengths):
initial, observations, actions, rewards, terminated = ep
observations = [np.resize(obs, [max_length + 1] + list(obs.shape)[1:])
for obs in observations]
actions = [np.resize(act, [max_length + 1] + list(act.shape)[1:])
for act in actions]
pads = np.array([0] * length + [1] * (max_length - length))
rewards = np.resize(rewards, [max_length]) * (1 - pads)
new_episodes.append([initial, observations, actions, rewards,
terminated, pads])
(initial, observations, actions, rewards,
terminated, pads) = zip(*new_episodes)
observations = [np.swapaxes(obs, 0, 1)
for obs in zip(*observations)]
actions = [np.swapaxes(act, 0, 1)
for act in zip(*actions)]
rewards = np.transpose(rewards)
pads = np.transpose(pads)
return (initial, observations, actions, rewards, terminated, pads)
def add_to_replay_buffer(self, initial_state,
observations, actions, rewards,
terminated, pads):
"""Add batch of episodes to replay buffer."""
if self.replay_buffer is None:
return
rewards = np.array(rewards)
pads = np.array(pads)
total_rewards = np.sum(rewards * (1 - pads), axis=0)
episodes = self.convert_from_batched_episodes(
initial_state, observations, actions, rewards,
terminated, pads)
priorities = (total_rewards if self.prioritize_by == 'reward'
else self.cur_step)
if not self.unify_episodes or self.all_new_ep:
self.last_idxs = self.replay_buffer.add(
episodes, priorities)
else:
# If we are unifying episodes, we attempt to
# keep them unified in the replay buffer.
# The first episode sampled in the current batch is a
# continuation of the last episode from the previous batch
self.replay_buffer.add(episodes[:1], priorities, self.last_idxs[-1:])
if len(episodes) > 1:
self.replay_buffer.add(episodes[1:], priorities)
def get_from_replay_buffer(self, batch_size):
"""Sample a batch of episodes from the replay buffer."""
if self.replay_buffer is None or len(self.replay_buffer) < 1 * batch_size:
return None, None
desired_count = batch_size * self.max_step
# in the case of batch_by_steps, we sample larger and larger
# amounts from the replay buffer until we have enough steps.
while True:
if batch_size > len(self.replay_buffer):
batch_size = len(self.replay_buffer)
episodes, probs = self.replay_buffer.get_batch(batch_size)
count = sum(len(ep[-2]) for ep in episodes)
if count >= desired_count or not self.batch_by_steps:
break
if batch_size == len(self.replay_buffer):
return None, None
batch_size *= 1.2
return (self.convert_to_batched_episodes(episodes), probs)
def seed_replay_buffer(self, episodes):
"""Seed the replay buffer with some episodes."""
if self.replay_buffer is None:
return
# just need to add initial state
for i in xrange(len(episodes)):
episodes[i] = [self.initial_internal_state()] + episodes[i]
self.replay_buffer.seed_buffer(episodes)