-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathlarge_train.py
239 lines (189 loc) · 7.69 KB
/
large_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from __future__ import division
from __future__ import print_function
import time
import random
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from utils import *
from model import *
import uuid
import pickle
from collections import Counter
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=0, help='Random seed.')
parser.add_argument('--epochs', type=int, default=1500, help='Number of epochs to train.')
parser.add_argument('--layer', type=int, default=3, help='Number of layers.')
parser.add_argument('--hidden', type=int, default=64, help='hidden dimensions.')
parser.add_argument('--dropout', type=float, default=0.6, help='Dropout rate (1 - keep probability).')
parser.add_argument('--patience', type=int, default=300, help='Patience')
parser.add_argument('--dev', type=int, default=0, help='device id')
parser.add_argument('--test', action='store_true', default=False, help='evaluation on test set.')
parser.add_argument('--layer_norm',type=int, default=1, help='layer norm')
parser.add_argument('--wd_fc1',type=float, default=1e-05, help='Weight decay layer-1')
parser.add_argument('--wd_fc2',type=float, default=1e-06, help='Weight decay layer-2')
parser.add_argument('--wd_fc3',type=float, default=9e-06, help='Weight decay layer-3')
parser.add_argument('--wd_att',type=float, default=0.1, help='Weight decay scalar')
parser.add_argument('--lr_fc1',type=float, default=0.00005, help='Learning rate fc layer-1')
parser.add_argument('--lr_fc2',type=float, default=0.0002, help='Learning rate fc layer-2')
parser.add_argument('--lr_fc3',type=float, default=0.00002, help='Learning rate fc layer-3')
parser.add_argument('--lr_att',type=float, default=0.0001, help='Learning rate scalar')
parser.add_argument('--batch_size',type=int, default=4096, help='Batch size')
parser.add_argument('--dp1',type=float, default=0.5, help='Dropout-1')
parser.add_argument('--dp2',type=float, default=0.6, help='Dropout-2')
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
num_layer = args.layer
layer_norm = bool(int(args.layer_norm))
batch_size = args.batch_size
print(f"========================")
print(f"ogbn-papers100M: Seed {args.seed}")
print(f"Dropout :: dropout1: {args.dp1}, dropout2:{args.dp2}, layer_norm: {layer_norm}")
print(f"Learning Rate:: lr_fc1: {args.lr_fc1}, lr_fc2: {args.lr_fc2}, lr_fc3: {args.lr_fc3}, lr_att: {args.lr_att}")
print(f"Weight Decay :: wd1: {args.wd_fc1}, wd2: {args.wd_fc2}, wd3: {args.wd_fc3}, w_att:{args.wd_att}")
print(f"Batch size :: {batch_size}")
data_path = './large_data/'
with open(data_path+"training.pickle","rb") as fopen:
train_data = pickle.load(fopen)
with open(data_path+"validation.pickle","rb") as fopen:
valid_data = pickle.load(fopen)
with open(data_path+"test.pickle","rb") as fopen:
test_data = pickle.load(fopen)
with open(data_path+"labels.pickle","rb") as fopen:
labels = pickle.load(fopen)
cudaid = "cuda:"+str(args.dev)
device = torch.device(cudaid)
train_data = [mat.to(device) for mat in train_data[:9]]
valid_data = [mat.to(device) for mat in valid_data[:9]]
#test_data = [mat.to(device) for mat in test_data[:9]]
train_labels = labels[0].reshape(-1).long().to(device)
valid_labels = labels[1].reshape(-1).long().to(device)
test_labels = labels[2].reshape(-1).long().to(device)
num_features = train_data[0].shape[1]
num_labels = int(train_labels.max()) + 1
#print(num_labels)
num_layer = args.layer
checkpt_file = 'pretrained/'+uuid.uuid4().hex+'.pt'
print(cudaid,checkpt_file)
model = FSGNN_Large(nfeat=num_features,
nlayers=2*args.layer + 1,
nhidden=args.hidden,
nclass=num_labels,
dp1=args.dp1,dp2=args.dp2).to(device)
optimizer_sett = [
{'params': model.wt1.parameters(), 'weight_decay': args.wd_fc1, 'lr': args.lr_fc1},
{'params': model.fc2.parameters(), 'weight_decay': args.wd_fc2, 'lr': args.lr_fc2},
{'params': model.fc3.parameters(), 'weight_decay': args.wd_fc3, 'lr': args.lr_fc3},
{'params': model.att, 'weight_decay': args.wd_att, 'lr': args.lr_att},
]
optimizer = optim.Adam(optimizer_sett)
def create_batch(input_data):
num_sample = input_data[0].shape[0]
list_bat = []
for i in range(0,num_sample,batch_size):
if (i+batch_size)<num_sample:
list_bat.append((i,i+batch_size))
else:
list_bat.append((i,num_sample))
return list_bat
def train(st,end):
model.train()
optimizer.zero_grad()
output = model(train_data,layer_norm,st,end)
acc_train = accuracy(output, train_labels[st:end])
loss_train = F.nll_loss(output, train_labels[st:end])
loss_train.backward()
optimizer.step()
return loss_train.item(),acc_train.item()
def validate(st,end):
model.eval()
with torch.no_grad():
output = model(valid_data,layer_norm,st,end)
loss_val = F.nll_loss(output, valid_labels[st:end])
acc_val = accuracy(output, valid_labels[st:end],batch=True)
return loss_val.item(),acc_val.item()
def test(st,end):
model.eval()
torch.cuda.empty_cache()
with torch.no_grad():
output = model(test_data,layer_norm,st,end)
loss_test = F.nll_loss(output, test_labels[st:end])
acc_test = accuracy(output, test_labels[st:end],batch=True)
return loss_test.item(),acc_test.item()
list_bat_train = create_batch(train_data)
list_bat_val = create_batch(valid_data)
list_bat_test = create_batch(test_data)
t_total = time.time()
bad_counter = 0
best = 999999999
best_epoch = 0
acc = 0
valid_num = valid_data[0].shape[0]
test_num = test_data[0].shape[0]
for epoch in range(args.epochs):
list_loss = []
list_acc = []
random.shuffle(list_bat_train)
for st,end in list_bat_train:
loss_tra,acc_tra = train(st,end)
list_loss.append(loss_tra)
list_acc.append(acc_tra)
loss_tra = np.round(np.mean(list_loss),4)
acc_tra = np.round(np.mean(list_acc),4)
list_loss_val = []
list_acc_val = []
for st,end in list_bat_val:
loss_val,acc_val = validate(st,end)
list_loss_val.append(loss_val)
list_acc_val.append(acc_val)
loss_val = np.mean(list_loss_val)
acc_val = (np.sum(list_acc_val))/valid_num
#Uncomment to see losses
'''
if(epoch+1)%1 == 0:
print('Epoch:{:04d}'.format(epoch+1),
'train',
'loss:{:.3f}'.format(loss_tra),
'acc:{:.2f}'.format(acc_tra*100),
'| val',
'loss:{:.3f}'.format(loss_val),
'acc:{:.2f}'.format(acc_val*100))
'''
if loss_val < best:
best = loss_val
best_epoch = epoch
acc = acc_val
torch.save(model.state_dict(), checkpt_file)
bad_counter = 0
else:
bad_counter += 1
if bad_counter == args.patience:
break
#Following lines only needed if GPU memory is not enough
#for loading all data and model training. Otherwise, test
#data can be loaded to GPU earlier.
del train_data
del valid_data
test_data = [mat.to(device) for mat in test_data[:9]]
torch.cuda.empty_cache()
if args.test:
list_loss_test = []
list_acc_test = []
model.load_state_dict(torch.load(checkpt_file))
for st,end in list_bat_test:
loss_test,acc_test = test(st,end)
list_loss_test.append(loss_test)
list_acc_test.append(acc_test)
acc_test = (np.sum(list_acc_test))/test_num
print("Train cost: {:.4f}s".format(time.time() - t_total))
print('Load {}th epoch'.format(best_epoch))
if args.test:
print(f"Valdiation accuracy: {np.round(acc*100,2)}, Test accuracy: {np.round(acc_test*100,2)}")
else:
print(f"Valdiation accuracy: {np.round(acc*100,2)}")