forked from wingniuqichao/caffe_Unet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
42 lines (37 loc) · 1.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import caffe
import numpy as np
caffe.set_mode_gpu()
caffe.set_device(0)
solver = caffe.AdamSolver('solver.prototxt')
# solver.solve()
epochs = 100
train_iter_per_epoch = 2307
g_avg_loss = []
g_avg_acc = []
best_acc = 0
for i in range(epochs):
avg_loss = np.zeros(train_iter_per_epoch)
avg_acc = np.zeros(train_iter_per_epoch)
for j in range(train_iter_per_epoch):
solver.step(1)
avg_loss[j] = solver.net.blobs['loss'].data
avg_acc[j] = solver.net.blobs['accuracy'].data
if j % 50 == 0:
mean_acc = avg_acc.sum()/(j+1)
mean_loss = avg_loss.sum()/(j+1)
g_avg_loss.append(mean_loss)
g_avg_acc.append(mean_acc)
print('epoch: %d, iters: %d, loss: %.4f, acc: %.4f, finished: %.2f'%(i+1, i*train_iter_per_epoch+j, mean_loss, mean_acc, 100.0*(j+1)/train_iter_per_epoch))
# print('epoch: %d, iter: %d, loss: %.4f, acc: %.4f'%(i*1250+j, mean_loss, mean_acc))
if avg_acc.mean() > best_acc:
best_acc = avg_acc.mean()
solver.net.save('results/iter_%d_best_acc=%.4f.caffemodel'%(i+1, best_acc))
with open('results/loss.txt', 'w') as f:
for val in g_avg_loss:
f.write("%.4f\n"%val)
with open('results/acc.txt', 'w') as f:
for val in g_avg_acc:
f.write("%.4f\n"%val)
import matplotlib.pyplot as plt
plt.imshow(g_avg_loss)
plt.show()