forked from Shandilya21/stock_movement_prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Stockprediction.py
112 lines (90 loc) · 3.81 KB
/
Stockprediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# IMPORTING IMPORTANT LIBRARIES
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import math
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.layers import LSTM
import preprocessing
np.random.seed(7)
# IMPORTING DATASET
dataset = pd.read_csv('apple_share_price.csv', usecols=[1,2,3,4])
dataset = dataset.reindex(index = dataset.index[::-1])
# CREATING OWN INDEX FOR FLEXIBILITY
obs = np.arange(1, len(dataset) + 1, 1)
# TAKING DIFFERENT INDICATORS FOR PREDICTION
OHLC_avg = dataset.mean(axis = 1)
HLC_avg = dataset[['High', 'Low', 'Close']].mean(axis = 1)
close_val = dataset[['Close']]
# PLOTTING ALL INDICATORS IN ONE PLOT
plt.plot(obs, OHLC_avg, 'r', label = 'OHLC avg')
plt.plot(obs, HLC_avg, 'b', label = 'HLC avg')
plt.plot(obs, close_val, 'g', label = 'Closing price')
plt.legend(loc = 'upper right')
plt.show()
# PREPARATION OF TIME SERIES DATASE
OHLC_avg = np.reshape(OHLC_avg.values, (len(OHLC_avg),1)) # 1664
scaler = MinMaxScaler(feature_range=(0, 1))
OHLC_avg = scaler.fit_transform(OHLC_avg)
# TRAIN-TEST SPLIT
train_OHLC = int(len(OHLC_avg) * 0.75)
test_OHLC = len(OHLC_avg) - train_OHLC
train_OHLC, test_OHLC = OHLC_avg[0:train_OHLC,:], OHLC_avg[train_OHLC:len(OHLC_avg),:]
# TIME-SERIES DATASET (FOR TIME T, VALUES FOR TIME T+1)
trainX, trainY = preprocessing.new_dataset(train_OHLC, 1)
testX, testY = preprocessing.new_dataset(test_OHLC, 1)
# RESHAPING TRAIN AND TEST DATA
trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
step_size = 1
# LSTM MODEL
model = Sequential()
model.add(LSTM(32, input_shape=(1, step_size), return_sequences = True))
model.add(LSTM(16))
model.add(Dense(1))
model.add(Activation('linear'))
# MODEL COMPILING AND TRAINING
model.compile(loss='mean_squared_error', optimizer='adagrad') # Try SGD, adam, adagrad and compare!!!
model.fit(trainX, trainY, epochs=20, batch_size=1, verbose=1)
# PREDICTION
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
# DE-NORMALIZING FOR PLOTTING
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])
# TRAINING RMSE
trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))
print('Train RMSE: %.2f' % (trainScore))
# TEST RMSE
testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0]))
print('Test RMSE: %.2f' % (testScore))
# CREATING SIMILAR DATASET TO PLOT TRAINING PREDICTIONS
trainPredictPlot = np.empty_like(OHLC_avg)
trainPredictPlot[:, :] = np.nan
trainPredictPlot[step_size:len(trainPredict)+step_size, :] = trainPredict
# CREATING SIMILAR DATASSET TO PLOT TEST PREDICTIONS
testPredictPlot = np.empty_like(OHLC_avg)
testPredictPlot[:, :] = np.nan
testPredictPlot[len(trainPredict)+(step_size*2)+1:len(OHLC_avg)-1, :] = testPredict
# DE-NORMALIZING MAIN DATASET
OHLC_avg = scaler.inverse_transform(OHLC_avg)
# PLOT OF MAIN OHLC VALUES, TRAIN PREDICTIONS AND TEST PREDICTIONS
plt.plot(OHLC_avg, 'g', label = 'original dataset')
plt.plot(trainPredictPlot, 'r', label = 'training set')
plt.plot(testPredictPlot, 'b', label = 'predicted stock price/test set')
plt.legend(loc = 'upper right')
plt.xlabel('Time in Days')
plt.ylabel('OHLC Value of Apple Stocks')
plt.show()
# PREDICT FUTURE VALUES
last_val = testPredict[-1]
last_val_scaled = last_val/last_val
next_val = model.predict(np.reshape(last_val_scaled, (1,1,1)))
print("Last Day Value:", np.asscalar(last_val))
print("Next Day Value:", np.asscalar(last_val*next_val))
# print np.append(last_val, next_val