-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
218 lines (167 loc) · 8.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# coding=utf-8
import argparse
import utils.data_processor as dp
import models.ctc.ctc_utils as cu
import tensorflow as tf
import numpy as np
from tensorflow.python.ops import ctc_ops as ctc
import nn.models as md
import os
import sys
FLAGS = None
# Accounting the 0th index + space + blank label = 34 characters
num_classes = ord('я') - ord('а') + 1 + 1 + 1 + 1
def run(_):
# We want to see all the logging messages for this tutorial.
tf.logging.set_verbosity(tf.logging.INFO)
# Start a new TensorFlow session.
session = tf.InteractiveSession()
training_steps_list = list(map(int, FLAGS.how_many_training_steps.split(',')))
learning_rates_list = list(map(float, FLAGS.learning_rate.split(',')))
if len(training_steps_list) != len(learning_rates_list):
raise Exception(
'--how_many_training_steps and --learning_rate must be equal length '
'lists, but are %d and %d long instead' % (len(training_steps_list),
len(learning_rates_list)))
control_dependencies = []
#if FLAGS.check_nans:
# checks = tf.add_check_numerics_ops()
# control_dependencies = [checks]
# Here we use sparse_placeholder that will generate a
# SparseTensor required by ctc_loss op.
targets = tf.sparse_placeholder(tf.int32, name='targets')
#feature_number = tf.placeholder(tf.int32, name='feature_number') # e.g. number of cepstrals in mfcc
# [batch_size x max_time x num_classes]
inputs = tf.placeholder(tf.float32, [FLAGS.batch_size, None, 13], name='inputs')
# Lengths of the audio sequences in frames, array [batch_size]
seq_lengths = tf.placeholder(tf.int32, shape=FLAGS.batch_size, name='seq_lengths')
# TODO: DIM?
logits = md.create_model(arch_type=FLAGS.model,
feature_input=inputs,
seq_lengths=seq_lengths,
settings=None,
num_classes=num_classes,
mode=FLAGS.mode)
# Create the back propagation and training evaluation machinery in the graph.
with tf.name_scope('ctc'):
cost = tf.reduce_mean(ctc.ctc_loss(labels=targets, inputs=logits, sequence_length=seq_lengths, time_major=True))
tf.summary.scalar('ctc_cost', cost)
with tf.name_scope('train'), tf.control_dependencies(control_dependencies):
learning_rate_input = tf.placeholder(tf.float32, [], name='learning_rate_input')
optimizer = tf.train.GradientDescentOptimizer(learning_rate_input).minimize(cost)
#logits = tf.transpose(logits, (1, 0, 2))
decoded, log_prob = ctc.ctc_beam_search_decoder(logits, seq_lengths)
evaluation_step = tf.reduce_mean(tf.edit_distance(tf.cast(decoded[0], tf.int32), targets)) # label error rate
tf.summary.scalar('ler', evaluation_step)
global_step = tf.contrib.framework.get_or_create_global_step()
increment_global_step = tf.assign(global_step, global_step + 1)
saver = tf.train.Saver(tf.global_variables())
# Merge all the summaries and write them out
merged_summaries = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train',
session.graph)
validation_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/validation')
tf.global_variables_initializer().run()
start_step = 1
if FLAGS.start_checkpoint:
md.load_variables_from_checkpoint(session, FLAGS.start_checkpoint)
start_step = global_step.eval(session=session)
tf.logging.info('Training from step: %d ', start_step)
# Save graph.pbtxt.
tf.train.write_graph(session.graph_def, FLAGS.train_dir, FLAGS.model + '.pbtxt')
# Training loop.
training_steps_max = np.sum(training_steps_list)
for training_step in range(start_step, training_steps_max + 1):
train_cost = train_ler = 0
# Figure out what the current learning rate is.
training_steps_sum = 0
for i in range(len(training_steps_list)):
training_steps_sum += training_steps_list[i]
if training_step <= training_steps_sum:
learning_rate_value = learning_rates_list[i]
break
# Pull the audio samples we'll use for training.
train_data = dp.load_batched_data(FLAGS.data_path, FLAGS.batch_size)
batch_number = 0
for batch in train_data:
train_inputs, train_targets, train_seq_len, originals = cu.handle_batch(batch)
sparse_targets = tf.SparseTensorValue(indices=train_targets[0], values=train_targets[1], dense_shape=train_targets[2])
feed = {#feature_number: train_inputs.shape[2],
inputs: train_inputs,
targets: sparse_targets,
learning_rate_input: learning_rate_value,
seq_lengths: train_seq_len}
train_summary, train_ler, ctc_cost, _, _ = session.run(
[merged_summaries, evaluation_step, cost, optimizer, increment_global_step], feed)
train_writer.add_summary(train_summary, training_step)
tf.logging.info('Batch #%d: rate %f, LER %.1f%%, CTC cost %f' %
(batch_number, learning_rate_value, train_ler * 100, ctc_cost))
batch_number += 1
val_data = dp.load_batched_data(FLAGS.val_path, FLAGS.batch_size)
total_accuracy = 0
for batch in val_data:
val_inputs, val_targets, val_seq_len, originals = cu.handle_batch(batch)
feed = {#feature_number: val_inputs.shape[2],
inputs: val_inputs,
targets: val_targets,
seq_lengths: val_seq_len}
validation_summary, val_ler = session.run(
[merged_summaries, evaluation_step], feed)
validation_writer.add_summary(validation_summary, training_step)
total_accuracy += val_ler
tf.logging.info('Step %d: Validation LER = %.1f%%' % (training_step, total_accuracy * 100))
# Save the model checkpoint periodically.
if training_step % FLAGS.save_step_interval == 0 or training_step == training_steps_max:
checkpoint_path = os.path.join(FLAGS.train_dir, FLAGS.model_architecture + '.ckpt')
tf.logging.info('Saving to "%s-%d"', checkpoint_path, training_step)
saver.save(session, checkpoint_path, global_step=training_step)
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='trainer', description='Script to train and test nn')
parser.add_argument('--mode',
type=str,
help='Running mode',
choices=['train', 'test'],
default='train')
parser.add_argument('--data_path',
type=str,
help='Path to data dir')
parser.add_argument('--val_path',
type=str,
help='Path to validation data dir')
parser.add_argument('--model',
help='Name of neural network model',
type=str)
parser.add_argument('--how_many_training_steps',
type=str,
default='15000,3000',
help='How many training loops to run')
parser.add_argument('--eval_step_interval',
type=int,
default=400,
help='How often to evaluate the training results.')
parser.add_argument('--learning_rate',
type=str,
default='0.001,0.0001',
help='How large a learning rate to use when training.')
parser.add_argument('--batch_size',
type=int,
default=10,
help='How many items to train with at once')
parser.add_argument('--summaries_dir',
type=str,
default='/tmp/retrain_logs',
help='Where to save summary logs for TensorBoard.')
parser.add_argument('--train_dir',
type=str,
default='/tmp/speech_commands_train',
help='Directory to write event logs and checkpoint.')
parser.add_argument('--save_step_interval',
type=int,
default=100,
help='Save model checkpoint every save_steps.')
parser.add_argument('--start_checkpoint',
type=str,
default='',
help='If specified, restore this pretrained model before any training.')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=run, argv=[sys.argv[0]] + unparsed)