简体中文 | English
Model | Epoch | backbone | input shape | Params(M) | FLOPs(G) | T4 TensorRT FP16(FPS) | Pretrained Model | config | ||
---|---|---|---|---|---|---|---|---|---|---|
RT-DETR-R18 | 6x | ResNet-18 | 640 | 46.5 | 63.8 | 20 | 60 | 217 | download | config |
RT-DETR-R34 | 6x | ResNet-34 | 640 | 48.9 | 66.8 | 31 | 92 | 161 | download | config |
RT-DETR-R50-m | 6x | ResNet-50 | 640 | 51.3 | 69.6 | 36 | 100 | 145 | download | config |
RT-DETR-R50 | 6x | ResNet-50 | 640 | 53.1 | 71.3 | 42 | 136 | 108 | download | config |
RT-DETR-R101 | 6x | ResNet-101 | 640 | 54.3 | 72.7 | 76 | 259 | 74 | download | config |
RT-DETR-L | 6x | HGNetv2 | 640 | 53.0 | 71.6 | 32 | 110 | 114 | download | config |
RT-DETR-X | 6x | HGNetv2 | 640 | 54.8 | 73.1 | 67 | 234 | 74 | download | config |
注意事项:
- RT-DETR 使用4个GPU训练。
- RT-DETR 在COCO train2017上训练,并在val2017上评估。
依赖包
pip install -r requirements.txt
准备数据
训练&评估
- 单卡GPU上训练:
# training on single-GPU
export CUDA_VISIBLE_DEVICES=0
python tools/train.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml --eval
- 多卡GPU上训练:
# training on multi-GPU
export CUDA_VISIBLE_DEVICES=0,1,2,3
python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml --fleet --eval
- 评估:
python tools/eval.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml \
-o weights=https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams
- 测试:
python tools/infer.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml \
-o weights=https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams \
--infer_img=./demo/000000570688.jpg
详情请参考快速开始文档.
1. 导出模型
python tools/export_model.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml \
-o weights=https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams trt=True \
--output_dir=output_inference
2. 转换模型至ONNX
- 安装Paddle2ONNX 和 ONNX
pip install onnx==1.13.0
pip install paddle2onnx==1.0.5
- 转换模型:
paddle2onnx --model_dir=./output_inference/rtdetr_r50vd_6x_coco/ \
--model_filename model.pdmodel \
--params_filename model.pdiparams \
--opset_version 16 \
--save_file rtdetr_r50vd_6x_coco.onnx
3. 转换成TensorRT
- 确保TensorRT的版本>=8.5.1
- TRT推理可以参考RT-DETR的部分代码或者其他网络资源
trtexec --onnx=./rtdetr_r50vd_6x_coco.onnx \
--workspace=4096 \
--shapes=image:1x3x640x640 \
--saveEngine=rtdetr_r50vd_6x_coco.trt \
--avgRuns=100 \
--fp16
1. 参数量和计算量统计
- 找到本地安装paddle的flops源代码, 并修改为
# anaconda3/lib/python3.8/site-packages/paddle/hapi/dynamic_flops.py
def flops(net, input_size, inputs=None, custom_ops=None, print_detail=False):
if isinstance(net, nn.Layer):
# If net is a dy2stat model, net.forward is StaticFunction instance,
# we set net.forward to original forward function.
_, net.forward = unwrap_decorators(net.forward)
# by lyuwenyu
if inputs is None:
inputs = paddle.randn(input_size)
return dynamic_flops(
net, inputs=inputs, custom_ops=custom_ops, print_detail=print_detail
)
elif isinstance(net, paddle.static.Program):
return static_flops(net, print_detail=print_detail)
else:
warnings.warn(
"Your model must be an instance of paddle.nn.Layer or paddle.static.Program."
)
return -1
- 使用以下代码片段实现参数量和计算量的统计
import paddle
from ppdet.core.workspace import load_config, merge_config
from ppdet.core.workspace import create
cfg_path = './configs/rtdetr/rtdetr_r50vd_6x_coco.yml'
cfg = load_config(cfg_path)
model = create(cfg.architecture)
blob = {
'image': paddle.randn([1, 3, 640, 640]),
'im_shape': paddle.to_tensor([[640, 640]]),
'scale_factor': paddle.to_tensor([[1., 1.]])
}
paddle.flops(model, None, blob, custom_ops=None, print_detail=False)
2. YOLOs端到端速度测速
- 可以参考RT-DETR benchmark部分或者其他网络资源
如果需要在你的研究中使用RT-DETR,请通过以下方式引用我们的论文:
@misc{lv2023detrs,
title={DETRs Beat YOLOs on Real-time Object Detection},
author={Wenyu Lv and Shangliang Xu and Yian Zhao and Guanzhong Wang and Jinman Wei and Cheng Cui and Yuning Du and Qingqing Dang and Yi Liu},
year={2023},
eprint={2304.08069},
archivePrefix={arXiv},
primaryClass={cs.CV}
}