From 957044706a1f3b821bc2670c5009347f2be5f8a7 Mon Sep 17 00:00:00 2001 From: cxnt Date: Fri, 23 Aug 2024 17:19:48 +0400 Subject: [PATCH] Add YOLOv10 checkpoints and implement app launch from json preset --- README.md | 2 +- config.json | 3 +- dev_requirements.txt | 2 +- src/globals.py | 2 +- src/main.py | 11 +- .../actions/neural_networks/deploy/deploy.py | 4 +- .../deploy/layout/pretrained_models.py | 154 +++++++++++++++--- .../actions/neural_networks/deploy/yolov8.md | 6 +- src/ui/tabs/presets.py | 17 +- src/ui/utils.py | 2 +- 10 files changed, 162 insertions(+), 41 deletions(-) diff --git a/README.md b/README.md index 72db86df..1b6f6dcf 100644 --- a/README.md +++ b/README.md @@ -90,7 +90,7 @@ This application is a versatile tool designed for data transformation tasks (lik | **Neural Networks** | | | | | [Apply NN Inference](https://github.com/supervisely-ecosystem/data-nodes/blob/master/src/ui/dtl/actions/neural_networks/apply_nn_inference/README.md#apply-nn-inference) | Apply neural network inference. | + | - | | [Deploy YOLOv5](https://github.com/supervisely-ecosystem/data-nodes/blob/master/src/ui/dtl/actions/neural_networks/deploy/yolov5.md) | Deploy pretrained or custom YOLOv5 model. | + | - | -| [Deploy YOLO (v8, v9)](https://github.com/supervisely-ecosystem/data-nodes/blob/master/src/ui/dtl/actions/neural_networks/deploy/yolov8.md) | Deploy pretrained or custom YOLO (v8, v9) model. | + | - | +| [Deploy YOLO (v8, v9, v10)](https://github.com/supervisely-ecosystem/data-nodes/blob/master/src/ui/dtl/actions/neural_networks/deploy/yolov8.md) | Deploy pretrained or custom YOLO (v8, v9, v10) model. | + | - | | [Deploy MMDetection](https://github.com/supervisely-ecosystem/data-nodes/blob/master/src/ui/dtl/actions/neural_networks/deploy/mmdetection.md) | Deploy pretrained or custom MMDetection model. | + | - | | [Deploy MMSegmentation](https://github.com/supervisely-ecosystem/data-nodes/blob/master/src/ui/dtl/actions/neural_networks/deploy/mmsegmentation.md) | Deploy pretrained or custom MMSegmentation model. | + | - | | **Other** | | | | diff --git a/config.json b/config.json index 4b24f25b..f099adb4 100644 --- a/config.json +++ b/config.json @@ -19,7 +19,8 @@ "images_project", "images_dataset", "videos_project", - "videos_dataset" + "videos_dataset", + "files_file" ] }, "instance_version": "6.11.8" diff --git a/dev_requirements.txt b/dev_requirements.txt index 9b4243eb..eafaa01c 100644 --- a/dev_requirements.txt +++ b/dev_requirements.txt @@ -1,6 +1,6 @@ git+https://github.com/supervisely/supervisely.git@optimize-index -# supervisely==6.73.161 +# supervisely==6.73.165 jsonschema==4.19.2 networkx==3.1 scikit-image==0.21.0 diff --git a/src/globals.py b/src/globals.py index 69ca4904..62dd2515 100644 --- a/src/globals.py +++ b/src/globals.py @@ -38,7 +38,7 @@ TEAM_FILES_PATH = "data-nodes" PROJECT_ID = sly.env.project_id(raise_not_found=False) DATASET_ID = sly.env.dataset_id(raise_not_found=False) -# FILE = sly.env.team_files_file(raise_not_found=False) +FILE = sly.env.team_files_file(raise_not_found=False) SUPPORTED_MODALITIES = ["images", "videos"] SUPPORTED_MODALITIES_MAP = { diff --git a/src/main.py b/src/main.py index a6dc0780..bca0655d 100644 --- a/src/main.py +++ b/src/main.py @@ -121,7 +121,10 @@ def generate_preview_for_project(layer: Layer): layer = None -if g.PIPELINE_TEMPLATE is not None: + +if g.FILE is not None: + load_json(g.FILE) +elif g.PIPELINE_TEMPLATE is not None: template = templates[g.MODALITY_TYPE].get(g.PIPELINE_TEMPLATE, None) if template is not None: load_template(template) @@ -146,8 +149,10 @@ def generate_preview_for_project(layer: Layer): if pr.type == "images": layer = create_new_layer(ImagesProjectAction.name) + layer.init_widgets() elif pr.type == "videos": layer = create_new_layer(VideosProjectAction.name) + layer.init_widgets() else: raise NotImplementedError(f"Project type {pr.type} is not supported") layer.from_json({"src": src, "settings": {"classes_mapping": "default"}}) @@ -158,15 +163,13 @@ def generate_preview_for_project(layer: Layer): pr: ProjectInfo = g.api.project.get_info_by_id(g.PROJECT_ID) src = [f"{pr.name}/*"] layer = create_new_layer(FilteredProjectAction.name) + layer.init_widgets() layer.from_json({"src": src, "settings": {"classes_mapping": "default"}}) node = layer.create_node() nodes_flow.add_node(node) update_loop.start() -# if g.FILE: -# g.updater("load_json") - app.call_before_shutdown(u.on_app_shutdown) if layer is not None: if g.MODALITY_TYPE == "images": diff --git a/src/ui/dtl/actions/neural_networks/deploy/deploy.py b/src/ui/dtl/actions/neural_networks/deploy/deploy.py index f836eb9c..45190a59 100644 --- a/src/ui/dtl/actions/neural_networks/deploy/deploy.py +++ b/src/ui/dtl/actions/neural_networks/deploy/deploy.py @@ -342,8 +342,8 @@ class DeployYOLOV5Action(DeployBaseAction): class DeployYOLOV8Action(DeployBaseAction): name = "deploy_yolo_v8" - title = "Deploy YOLO (v8, v9)" - description = "Deploy YOLO (v8, v9) models." + title = "YOLO v8 | v9 | v10" + description = "Deploy YOLO v8 | v9 | v10 models." md_description = DeployBaseAction.read_md_file(dirname(realpath(__file__)) + "/yolov8.md") # Framework settings diff --git a/src/ui/dtl/actions/neural_networks/deploy/layout/pretrained_models.py b/src/ui/dtl/actions/neural_networks/deploy/layout/pretrained_models.py index 3b48a6d4..211d6ca9 100644 --- a/src/ui/dtl/actions/neural_networks/deploy/layout/pretrained_models.py +++ b/src/ui/dtl/actions/neural_networks/deploy/layout/pretrained_models.py @@ -113,58 +113,113 @@ yolov8 = [ { - "Model": "YOLOv8n-det", + "Model": "YOLOv8n-det (COCO)", "Size (pixels)": "640", "mAP": "37.3", "params (M)": "3.2", "FLOPs (B)": "8.7", "meta": { "task_type": "object detection", - "weights_url": "https://github.com/ultralytics/assets/releases/download/v0.0.0/YOLOv8n.pt", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/YOLOv8n.pt", }, }, { - "Model": "YOLOv8s-det", + "Model": "YOLOv8n-det (Open Images V7)", + "Size (pixels)": "640", + "mAP": "18.4", + "params (M)": "3.5", + "FLOPs (B)": "10.5", + "meta": { + "task_type": "object detection", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-oiv7.pt", + }, + }, + { + "Model": "YOLOv8s-det (COCO)", "Size (pixels)": "640", "mAP": "44.9", "params (M)": "11.2", "FLOPs (B)": "28.6", "meta": { "task_type": "object detection", - "weights_url": "https://github.com/ultralytics/assets/releases/download/v0.0.0/YOLOv8s.pt", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/YOLOv8s.pt", + }, + }, + { + "Model": "YOLOv8s-det (Open Images V7)", + "Size (pixels)": "640", + "mAP": "27.7", + "params (M)": "11.4", + "FLOPs (B)": "29.7", + "meta": { + "task_type": "object detection", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-oiv7.pt", }, }, { - "Model": "YOLOv8m-det", + "Model": "YOLOv8m-det (COCO)", "Size (pixels)": "640", "mAP": "50.2", "params (M)": "25.9", "FLOPs (B)": "78.9", "meta": { "task_type": "object detection", - "weights_url": "https://github.com/ultralytics/assets/releases/download/v0.0.0/YOLOv8m.pt", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/YOLOv8m.pt", }, }, { - "Model": "YOLOv8l-det", + "Model": "YOLOv8m-det (Open Images V7)", + "Size (pixels)": "640", + "mAP": "33.6", + "params (M)": "26.2", + "FLOPs (B)": "80.6", + "meta": { + "task_type": "object detection", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-oiv7.pt", + }, + }, + { + "Model": "YOLOv8l-det (COCO)", "Size (pixels)": "640", "mAP": "52.9", "params (M)": "43.7", "FLOPs (B)": "165.2", "meta": { "task_type": "object detection", - "weights_url": "https://github.com/ultralytics/assets/releases/download/v0.0.0/YOLOv8l.pt", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/YOLOv8l.pt", + }, + }, + { + "Model": "YOLOv8l-det (Open Images V7)", + "Size (pixels)": "640", + "mAP": "34.9", + "params (M)": "44.1", + "FLOPs (B)": "167.4", + "meta": { + "task_type": "object detection", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-oiv7.pt", }, }, { - "Model": "YOLOv8x-det", + "Model": "YOLOv8x-det (COCO)", "Size (pixels)": "640", "mAP": "53.9", "params (M)": "68.2", "FLOPs (B)": "257.8", "meta": { "task_type": "object detection", - "weights_url": "https://github.com/ultralytics/assets/releases/download/v0.0.0/YOLOv8x.pt", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/YOLOv8x.pt", + }, + }, + { + "Model": "YOLOv8x-det (Open Images V7)", + "Size (pixels)": "640", + "mAP": "36.3", + "params (M)": "68.7", + "FLOPs (B)": "260.6", + "meta": { + "task_type": "object detection", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-oiv7.pt", }, }, { @@ -176,7 +231,7 @@ "FLOPs (B)": "12.6", "meta": { "task_type": "instance segmentation", - "weights_url": "https://github.com/ultralytics/assets/releases/download/v0.0.0/YOLOv8n-seg.pt", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/YOLOv8n-seg.pt", }, }, { @@ -188,7 +243,7 @@ "FLOPs (B)": "42.6", "meta": { "task_type": "instance segmentation", - "weights_url": "https://github.com/ultralytics/assets/releases/download/v0.0.0/YOLOv8s-seg.pt", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/YOLOv8s-seg.pt", }, }, { @@ -200,7 +255,7 @@ "FLOPs (B)": "110.2", "meta": { "task_type": "instance segmentation", - "weights_url": "https://github.com/ultralytics/assets/releases/download/v0.0.0/YOLOv8m-seg.pt", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/YOLOv8m-seg.pt", }, }, { @@ -212,7 +267,7 @@ "FLOPs (B)": "220.5", "meta": { "task_type": "instance segmentation", - "weights_url": "https://github.com/ultralytics/assets/releases/download/v0.0.0/YOLOv8l-seg.pt", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/YOLOv8l-seg.pt", }, }, { @@ -224,7 +279,7 @@ "FLOPs (B)": "344.1", "meta": { "task_type": "instance segmentation", - "weights_url": "https://github.com/ultralytics/assets/releases/download/v0.0.0/YOLOv8x-seg.pt", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/YOLOv8x-seg.pt", }, }, { @@ -235,7 +290,7 @@ "FLOPs (B)": "9.2", "meta": { "task_type": "pose estimation", - "weights_url": "https://github.com/ultralytics/assets/releases/download/v0.0.0/YOLOv8n-pose.pt", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/YOLOv8n-pose.pt", }, }, { @@ -246,7 +301,7 @@ "FLOPs (B)": "30.2", "meta": { "task_type": "pose estimation", - "weights_url": "https://github.com/ultralytics/assets/releases/download/v0.0.0/YOLOv8s-pose.pt", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/YOLOv8s-pose.pt", }, }, { @@ -257,7 +312,7 @@ "FLOPs (B)": "81.0", "meta": { "task_type": "pose estimation", - "weights_url": "https://github.com/ultralytics/assets/releases/download/v0.0.0/YOLOv8m-pose.pt", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/YOLOv8m-pose.pt", }, }, { @@ -268,7 +323,7 @@ "FLOPs (B)": "168.6", "meta": { "task_type": "pose estimation", - "weights_url": "https://github.com/ultralytics/assets/releases/download/v0.0.0/YOLOv8l-pose.pt", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/YOLOv8l-pose.pt", }, }, { @@ -279,7 +334,7 @@ "FLOPs (B)": "263.2", "meta": { "task_type": "pose estimation", - "weights_url": "https://github.com/ultralytics/assets/releases/download/v0.0.0/YOLOv8x-pose.pt", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/YOLOv8x-pose.pt", }, }, { @@ -290,7 +345,7 @@ "FLOPs (B)": "1066.4", "meta": { "task_type": "pose estimation", - "weights_url": "https://github.com/ultralytics/assets/releases/download/v0.0.0/YOLOv8x-pose-p6.pt", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/YOLOv8x-pose-p6.pt", }, }, { @@ -338,7 +393,62 @@ "task_type": "instance segmentation", "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov9e-seg.pt", }, - } + }, + { + "Model": "YOLOv10n-det", + "Size (pixels)": "640", + "mAP": "39.5", + "params (M)": "2.3", + "FLOPs (B)": "6.7", + "meta": { + "task_type": "object detection", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov10n.pt", + }, + }, + { + "Model": "YOLOv10s-det", + "Size (pixels)": "640", + "mAP": "46.8", + "params (M)": "7.2", + "FLOPs (B)": "21.6", + "meta": { + "task_type": "object detection", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov10s.pt", + }, + }, + { + "Model": "YOLOv10m-det", + "Size (pixels)": "640", + "mAP": "51.3", + "params (M)": "15.4", + "FLOPs (B)": "59.1", + "meta": { + "task_type": "object detection", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov10m.pt", + }, + }, + { + "Model": "YOLOv10l-det", + "Size (pixels)": "640", + "mAP": "53.4", + "params (M)": "24.4", + "FLOPs (B)": "120.3", + "meta": { + "task_type": "object detection", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov10l.pt", + }, + }, + { + "Model": "YOLOv10x-det", + "Size (pixels)": "640", + "mAP": "54.4", + "params (M)": "29.5", + "FLOPs (B)": "160.4", + "meta": { + "task_type": "object detection", + "weights_url": "https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov10x.pt", + }, + }, ] mmdetection3 = [ diff --git a/src/ui/dtl/actions/neural_networks/deploy/yolov8.md b/src/ui/dtl/actions/neural_networks/deploy/yolov8.md index b29e083a..c9fa4c96 100644 --- a/src/ui/dtl/actions/neural_networks/deploy/yolov8.md +++ b/src/ui/dtl/actions/neural_networks/deploy/yolov8.md @@ -1,6 +1,6 @@ -# Deploy YOLO (v8, v9) +# YOLO v8 | v9 | v10 -`Deploy YOLO (v8, v9)` using [Serve YOLO (v8, v9)](https://ecosystem.supervisely.com/apps/yolov8/serve) app to serve models and can be used to deploy custom and pretrained models that you can use via `Apply NN` layer. Custom models will appear in the custom tab of the table only if you have any trained YOLO (v8, v9) models in your Team Files. You can train your own model using [Train YOLO (v8, v9)](https://ecosystem.supervisely.com/apps/yolov8/train) app. If you want to use pretrained models, simply select "Pretrained public models" tab in model selector. +`Deploy YOLO v8 | v9 | v10` using [Serve YOLO YOLO v8 | v9 | v10](https://ecosystem.supervisely.com/apps/yolov8/serve) app to serve models and can be used to deploy custom and pretrained models that you can use via `Apply NN` layer. Custom models will appear in the custom tab of the table only if you have any trained YOLO YOLO v8 | v9 | v10 models in your Team Files. You can train your own model using [Train YOLO YOLO v8 | v9 | v10](https://ecosystem.supervisely.com/apps/yolov8/train) app. If you want to use pretrained models, simply select "Pretrained public models" tab in model selector. ![image](https://github.com/supervisely-ecosystem/data-nodes/assets/48913536/791a50bf-51b5-4bdb-8bda-0f4ed2a3d06b) @@ -8,7 +8,7 @@ ### How to use: -1. Add `Deploy YOLO (v8, v9)` layer +1. Add `Deploy YOLO YOLO v8 | v9 | v10` layer 2. Open agent settings and select agent and device 3. Open models selector and select one of the available models 4. Press `SERVE` diff --git a/src/ui/tabs/presets.py b/src/ui/tabs/presets.py index 65b1639b..9f7e799a 100644 --- a/src/ui/tabs/presets.py +++ b/src/ui/tabs/presets.py @@ -1,7 +1,7 @@ import random import json from time import sleep - +from typing import Optional from supervisely.app.widgets import ( Button, Container, @@ -17,6 +17,7 @@ ) from supervisely.app import show_dialog from supervisely import logger +from supervisely.io.fs import get_file_name_with_ext from src.compute.Net import Net from src.ui.dtl.Layer import Layer from src.ui.dtl.Action import SourceAction @@ -164,21 +165,27 @@ def preset_name_input_cb(value): save_preset_btn.enable() -def load_json(): +def load_json(remote_file_path: Optional[str] = None): load_preset_btn.loading = True load_file_selector.disable() load_notification_select.set_value("empty") preset_loaded = True - filename = load_file_selector.get_value() + if remote_file_path is not None: + filename = get_file_name_with_ext(remote_file_path) + else: + filename = load_file_selector.get_value() logger.info(f"Loading preset: {filename}") if filename is None: load_notification_select.set_value("not selected") load_preset_btn.loading = False load_file_selector.enable() return - # path =f"/{g.TEAM_FILES_PATH}/presets/{filename}.json" - path = f"{g.PRESETS_PATH}/{filename}.json" + + if remote_file_path is not None: + path = remote_file_path + else: + path = f"{g.PRESETS_PATH}/{filename}.json" nodes_flow.clear() g.layers.clear() try: diff --git a/src/ui/utils.py b/src/ui/utils.py index f23e8a8a..570f1142 100644 --- a/src/ui/utils.py +++ b/src/ui/utils.py @@ -693,7 +693,7 @@ def create_new_layer( register_layer(layer) StateJson().send_changes() DataJson().send_changes() - layer.init_widgets() + # layer.init_widgets() return layer