Export prepares downloadable .tar
archive, that contains:
- original images
- annotations in Supervisely JSON format
- human masks - RGB masks where every pixel has the color of the corresponding class (semantic segmentation)
- machine masks. Notice: if you open machine mask image in standard image viewer, it will look like completely black image, but it is not. Class colors for machine mask are generated automatically as indices of classes.
(0, 0, 0)
- is always a background (unlabeled area), (1, 1, 1) - for class #1, (2, 2, 2) - for class #2, etc ... Mapping between machine colors and classes in machine mask is saved inobj_class_to_machine_color.json
file. - instance masks - BW masks for every object on the image (instance segmentation)
🏋️ Starting from version v2.1.11 application supports split archives. If the archive file size is too big, it will be split into several parts. Learn more below in the "How to extract split archives" section.
For example:
{
"kiwi": [1, 1, 1],
"lemon": [2, 2, 2]
}
Output example:
<id_project_name>.tar
├── cat
│ ├── ann
│ │ ├── cats_1.jpg.json
│ │ ├── ...
│ │ └── cats_9.jpg.json
│ ├── img
│ │ ├── cats_1.jpg
│ │ ├── ...
│ │ └── cats_9.jpg
│ ├── masks_human
│ │ ├── cats_1.png
│ │ ├── ...
│ │ └── cats_9.png
│ ├── masks_instances
│ │ ├── cats_1
│ │ │ ├── cats_1.png
│ │ │ ├── ...
│ │ │ └── cats_9.png
│ │ ├── ...
│ │ └── cats_9
│ │ ├── cats_1.png
│ │ ├── ...
│ │ └── cats_9.png
│ └── masks_machine
│ ├── cats_1.png
│ ├── ...
│ └── cats_9.png
└── dog
├── ann
│ ├── dogs_1.jpg.json
│ ├── ...
│ └── dogs_9.jpg.json
├── img
│ ├── dogs_1.jpg
│ ├── ...
│ └── dogs_9.jpg
├── masks_human
│ ├── dogs_1.png
│ ├── ...
│ └── dogs_9.png
├── masks_instances
│ ├── dogs_1
│ │ ├── dogs_1.png
│ │ ├── ...
│ │ └── dogs_9.png
│ ├── ...
│ └── dogs_9
│ ├── dogs_1.png
│ ├── ...
│ └── dogs_9.png
└── masks_machine
├── dogs_1.png
├── ...
└── dogs_9.png
Step 1: Add app to your team from Ecosystem if it is not there
Step 2: Open context menu of images project -> Download via App
-> Export as masks
Step 3: Define export settings in modal window
Step 4: Result archive will be available for download:
- single archive: in the Tasks list (image below) or from Team Files
Team Files
->tmp
->supervisely
->export
->export-as-masks
->task_id
-><projectId>_<projectName>.tar
- split archive: all parts will be stored in the Team Files directory
Team Files
->tmp
->supervisely
->export
->export-as-masks
-><task_id>
In the case of a split archive:
- download all parts from
Team Files
directory (Team Files
->tmp
->supervisely
->export
->export-as-masks
-><task_id>
) - After downloading all archive parts, you can extract them:
-
for Windows: use the following freeware to unpack Multi-Tar files: 7-zip and click on the first file (with extension
.tar.001
) -
for MacOS: replace
<path_to_folder_with_archive_parts>
,<projectId>
and<projectName>
with your values and run the following commands in the terminal:
cd <path_to_folder_with_archive_parts>
cat <projectId>_<projectName>.tar* | tar --options read_concatenated_archives -xvf -
- for Linux (Ubuntu):
replace
<path_to_folder_with_archive_parts>
,<projectId>
and<projectName>
with your values and run the following commands in the terminal:
cd <path_to_folder_with_archive_parts>
cat '<projectId>_<projectName>.tar'* > result_archive.tar | tar -xvf result_archive.tar