forked from openpnp/grbl
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlimits.c
430 lines (388 loc) · 18.3 KB
/
limits.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
/*
limits.c - code pertaining to limit-switches and performing the homing cycle
Part of Grbl
Copyright (c) 2012-2016 Sungeun K. Jeon for Gnea Research LLC
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include "grbl.h"
// Homing axis search distance multiplier. Computed by this value times the cycle travel.
#ifndef HOMING_AXIS_SEARCH_SCALAR
#define HOMING_AXIS_SEARCH_SCALAR 1.5 // Must be > 1 to ensure limit switch will be engaged.
#endif
#ifndef HOMING_AXIS_LOCATE_SCALAR
#define HOMING_AXIS_LOCATE_SCALAR 5.0 // Must be > 1 to ensure limit switch is cleared.
#endif
#ifdef ENABLE_DUAL_AXIS
// Flags for dual axis async limit trigger check.
#define DUAL_AXIS_CHECK_DISABLE 0 // Must be zero
#define DUAL_AXIS_CHECK_ENABLE bit(0)
#define DUAL_AXIS_CHECK_TRIGGER_1 bit(1)
#define DUAL_AXIS_CHECK_TRIGGER_2 bit(2)
#endif
void limits_init()
{
LIMIT_DDR &= ~(LIMIT_MASK); // Set as input pins
#ifdef DISABLE_LIMIT_PIN_PULL_UP
LIMIT_PORT &= ~(LIMIT_MASK); // Normal low operation. Requires external pull-down.
#else
LIMIT_PORT |= (LIMIT_MASK); // Enable internal pull-up resistors. Normal high operation.
#endif
if (bit_istrue(settings.flags,BITFLAG_HARD_LIMIT_ENABLE)) {
LIMIT_PCMSK |= LIMIT_MASK; // Enable specific pins of the Pin Change Interrupt
PCICR |= (1 << LIMIT_INT); // Enable Pin Change Interrupt
} else {
limits_disable();
}
#ifdef ENABLE_SOFTWARE_DEBOUNCE
MCUSR &= ~(1<<WDRF);
WDTCSR |= (1<<WDCE) | (1<<WDE);
WDTCSR = (1<<WDP0); // Set time-out at ~32msec.
#endif
}
// Disables hard limits.
void limits_disable()
{
LIMIT_PCMSK &= ~LIMIT_MASK; // Disable specific pins of the Pin Change Interrupt
PCICR &= ~(1 << LIMIT_INT); // Disable Pin Change Interrupt
}
// Returns limit state as a bit-wise uint8 variable. Each bit indicates an axis limit, where
// triggered is 1 and not triggered is 0. Invert mask is applied. Axes are defined by their
// number in bit position, i.e. Z_AXIS is (1<<2) or bit 2, and Y_AXIS is (1<<1) or bit 1.
uint8_t limits_get_state()
{
uint8_t limit_state = 0;
uint8_t pin = (LIMIT_PIN & LIMIT_MASK);
#ifdef INVERT_LIMIT_PIN_MASK
pin ^= INVERT_LIMIT_PIN_MASK;
#endif
if (bit_isfalse(settings.flags,BITFLAG_INVERT_LIMIT_PINS)) { pin ^= LIMIT_MASK; }
if (pin) {
uint8_t idx;
for (idx=0; idx<N_AXIS; idx++) {
if (pin & get_limit_pin_mask(idx)) { limit_state |= (1 << idx); }
}
#ifdef ENABLE_DUAL_AXIS
if (pin & (1<<DUAL_LIMIT_BIT)) { limit_state |= (1 << N_AXIS); }
#endif
}
return(limit_state);
}
// This is the Limit Pin Change Interrupt, which handles the hard limit feature. A bouncing
// limit switch can cause a lot of problems, like false readings and multiple interrupt calls.
// If a switch is triggered at all, something bad has happened and treat it as such, regardless
// if a limit switch is being disengaged. It's impossible to reliably tell the state of a
// bouncing pin because the Arduino microcontroller does not retain any state information when
// detecting a pin change. If we poll the pins in the ISR, you can miss the correct reading if the
// switch is bouncing.
// NOTE: Do not attach an e-stop to the limit pins, because this interrupt is disabled during
// homing cycles and will not respond correctly. Upon user request or need, there may be a
// special pinout for an e-stop, but it is generally recommended to just directly connect
// your e-stop switch to the Arduino reset pin, since it is the most correct way to do this.
#ifndef ENABLE_SOFTWARE_DEBOUNCE
ISR(LIMIT_INT_vect) // DEFAULT: Limit pin change interrupt process.
{
// Ignore limit switches if already in an alarm state or in-process of executing an alarm.
// When in the alarm state, Grbl should have been reset or will force a reset, so any pending
// moves in the planner and serial buffers are all cleared and newly sent blocks will be
// locked out until a homing cycle or a kill lock command. Allows the user to disable the hard
// limit setting if their limits are constantly triggering after a reset and move their axes.
if (sys.state != STATE_ALARM) {
if (!(sys_rt_exec_alarm)) {
#ifdef HARD_LIMIT_FORCE_STATE_CHECK
// Check limit pin state.
if (limits_get_state()) {
mc_reset(); // Initiate system kill.
system_set_exec_alarm(EXEC_ALARM_HARD_LIMIT); // Indicate hard limit critical event
}
#else
mc_reset(); // Initiate system kill.
system_set_exec_alarm(EXEC_ALARM_HARD_LIMIT); // Indicate hard limit critical event
#endif
}
}
}
#else // OPTIONAL: Software debounce limit pin routine.
// Upon limit pin change, enable watchdog timer to create a short delay.
ISR(LIMIT_INT_vect) { if (!(WDTCSR & (1<<WDIE))) { WDTCSR |= (1<<WDIE); } }
ISR(WDT_vect) // Watchdog timer ISR
{
WDTCSR &= ~(1<<WDIE); // Disable watchdog timer.
if (sys.state != STATE_ALARM) { // Ignore if already in alarm state.
if (!(sys_rt_exec_alarm)) {
// Check limit pin state.
if (limits_get_state()) {
mc_reset(); // Initiate system kill.
system_set_exec_alarm(EXEC_ALARM_HARD_LIMIT); // Indicate hard limit critical event
}
}
}
}
#endif
// Homes the specified cycle axes, sets the machine position, and performs a pull-off motion after
// completing. Homing is a special motion case, which involves rapid uncontrolled stops to locate
// the trigger point of the limit switches. The rapid stops are handled by a system level axis lock
// mask, which prevents the stepper algorithm from executing step pulses. Homing motions typically
// circumvent the processes for executing motions in normal operation.
// NOTE: Only the abort realtime command can interrupt this process.
// TODO: Move limit pin-specific calls to a general function for portability.
void limits_go_home(uint8_t cycle_mask)
{
if (sys.abort) { return; } // Block if system reset has been issued.
// Initialize plan data struct for homing motion. Spindle and coolant are disabled.
plan_line_data_t plan_data;
plan_line_data_t *pl_data = &plan_data;
memset(pl_data,0,sizeof(plan_line_data_t));
pl_data->condition = (PL_COND_FLAG_SYSTEM_MOTION|PL_COND_FLAG_NO_FEED_OVERRIDE);
#ifdef USE_LINE_NUMBERS
pl_data->line_number = HOMING_CYCLE_LINE_NUMBER;
#endif
// Initialize variables used for homing computations.
uint8_t n_cycle = (2*N_HOMING_LOCATE_CYCLE+1);
uint8_t step_pin[N_AXIS];
#ifdef ENABLE_DUAL_AXIS
uint8_t step_pin_dual;
uint8_t dual_axis_async_check;
int32_t dual_trigger_position;
#if (DUAL_AXIS_SELECT == X_AXIS)
float fail_distance = (-DUAL_AXIS_HOMING_FAIL_AXIS_LENGTH_PERCENT/100.0)*settings.max_travel[Y_AXIS];
#else
float fail_distance = (-DUAL_AXIS_HOMING_FAIL_AXIS_LENGTH_PERCENT/100.0)*settings.max_travel[X_AXIS];
#endif
fail_distance = min(fail_distance, DUAL_AXIS_HOMING_FAIL_DISTANCE_MAX);
fail_distance = max(fail_distance, DUAL_AXIS_HOMING_FAIL_DISTANCE_MIN);
int32_t dual_fail_distance = trunc(fail_distance*settings.steps_per_mm[DUAL_AXIS_SELECT]);
// int32_t dual_fail_distance = trunc((DUAL_AXIS_HOMING_TRIGGER_FAIL_DISTANCE)*settings.steps_per_mm[DUAL_AXIS_SELECT]);
#endif
float target[N_AXIS];
float max_travel = 0.0;
uint8_t idx;
for (idx=0; idx<N_AXIS; idx++) {
// Initialize step pin masks
step_pin[idx] = get_step_pin_mask(idx);
#ifdef COREXY
if ((idx==A_MOTOR)||(idx==B_MOTOR)) { step_pin[idx] = (get_step_pin_mask(X_AXIS)|get_step_pin_mask(Y_AXIS)); }
#endif
if (bit_istrue(cycle_mask,bit(idx))) {
// Set target based on max_travel setting. Ensure homing switches engaged with search scalar.
// NOTE: settings.max_travel[] is stored as a negative value.
max_travel = max(max_travel,(-HOMING_AXIS_SEARCH_SCALAR)*settings.max_travel[idx]);
}
}
#ifdef ENABLE_DUAL_AXIS
step_pin_dual = (1<<DUAL_STEP_BIT);
#endif
// Set search mode with approach at seek rate to quickly engage the specified cycle_mask limit switches.
bool approach = true;
float homing_rate = settings.homing_seek_rate;
uint8_t limit_state, axislock, n_active_axis;
do {
system_convert_array_steps_to_mpos(target,sys_position);
// Initialize and declare variables needed for homing routine.
axislock = 0;
#ifdef ENABLE_DUAL_AXIS
sys.homing_axis_lock_dual = 0;
dual_trigger_position = 0;
dual_axis_async_check = DUAL_AXIS_CHECK_DISABLE;
#endif
n_active_axis = 0;
for (idx=0; idx<N_AXIS; idx++) {
// Set target location for active axes and setup computation for homing rate.
if (bit_istrue(cycle_mask,bit(idx))) {
n_active_axis++;
#ifdef COREXY
if (idx == X_AXIS) {
int32_t axis_position = system_convert_corexy_to_y_axis_steps(sys_position);
sys_position[A_MOTOR] = axis_position;
sys_position[B_MOTOR] = -axis_position;
} else if (idx == Y_AXIS) {
int32_t axis_position = system_convert_corexy_to_x_axis_steps(sys_position);
sys_position[A_MOTOR] = sys_position[B_MOTOR] = axis_position;
} else {
sys_position[Z_AXIS] = 0;
}
#else
sys_position[idx] = 0;
#endif
// Set target direction based on cycle mask and homing cycle approach state.
// NOTE: This happens to compile smaller than any other implementation tried.
if (bit_istrue(settings.homing_dir_mask,bit(idx))) {
if (approach) { target[idx] = -max_travel; }
else { target[idx] = max_travel; }
} else {
if (approach) { target[idx] = max_travel; }
else { target[idx] = -max_travel; }
}
// Apply axislock to the step port pins active in this cycle.
axislock |= step_pin[idx];
#ifdef ENABLE_DUAL_AXIS
if (idx == DUAL_AXIS_SELECT) { sys.homing_axis_lock_dual = step_pin_dual; }
#endif
}
}
homing_rate *= sqrt(n_active_axis); // [sqrt(N_AXIS)] Adjust so individual axes all move at homing rate.
sys.homing_axis_lock = axislock;
// Perform homing cycle. Planner buffer should be empty, as required to initiate the homing cycle.
pl_data->feed_rate = homing_rate; // Set current homing rate.
plan_buffer_line(target, pl_data); // Bypass mc_line(). Directly plan homing motion.
sys.step_control = STEP_CONTROL_EXECUTE_SYS_MOTION; // Set to execute homing motion and clear existing flags.
st_prep_buffer(); // Prep and fill segment buffer from newly planned block.
st_wake_up(); // Initiate motion
do {
if (approach) {
// Check limit state. Lock out cycle axes when they change.
limit_state = limits_get_state();
for (idx=0; idx<N_AXIS; idx++) {
if (axislock & step_pin[idx]) {
if (limit_state & (1 << idx)) {
#ifdef COREXY
if (idx==Z_AXIS) { axislock &= ~(step_pin[Z_AXIS]); }
else { axislock &= ~(step_pin[A_MOTOR]|step_pin[B_MOTOR]); }
#else
axislock &= ~(step_pin[idx]);
#ifdef ENABLE_DUAL_AXIS
if (idx == DUAL_AXIS_SELECT) { dual_axis_async_check |= DUAL_AXIS_CHECK_TRIGGER_1; }
#endif
#endif
}
}
}
sys.homing_axis_lock = axislock;
#ifdef ENABLE_DUAL_AXIS
if (sys.homing_axis_lock_dual) { // NOTE: Only true when homing dual axis.
if (limit_state & (1 << N_AXIS)) {
sys.homing_axis_lock_dual = 0;
dual_axis_async_check |= DUAL_AXIS_CHECK_TRIGGER_2;
}
}
// When first dual axis limit triggers, record position and begin checking distance until other limit triggers. Bail upon failure.
if (dual_axis_async_check) {
if (dual_axis_async_check & DUAL_AXIS_CHECK_ENABLE) {
if (( dual_axis_async_check & (DUAL_AXIS_CHECK_TRIGGER_1 | DUAL_AXIS_CHECK_TRIGGER_2)) == (DUAL_AXIS_CHECK_TRIGGER_1 | DUAL_AXIS_CHECK_TRIGGER_2)) {
dual_axis_async_check = DUAL_AXIS_CHECK_DISABLE;
} else {
if (abs(dual_trigger_position - sys_position[DUAL_AXIS_SELECT]) > dual_fail_distance) {
system_set_exec_alarm(EXEC_ALARM_HOMING_FAIL_DUAL_APPROACH);
mc_reset();
protocol_execute_realtime();
return;
}
}
} else {
dual_axis_async_check |= DUAL_AXIS_CHECK_ENABLE;
dual_trigger_position = sys_position[DUAL_AXIS_SELECT];
}
}
#endif
}
st_prep_buffer(); // Check and prep segment buffer. NOTE: Should take no longer than 200us.
// Exit routines: No time to run protocol_execute_realtime() in this loop.
if (sys_rt_exec_state & (EXEC_SAFETY_DOOR | EXEC_RESET | EXEC_CYCLE_STOP)) {
uint8_t rt_exec = sys_rt_exec_state;
// Homing failure condition: Reset issued during cycle.
if (rt_exec & EXEC_RESET) { system_set_exec_alarm(EXEC_ALARM_HOMING_FAIL_RESET); }
// Homing failure condition: Safety door was opened.
if (rt_exec & EXEC_SAFETY_DOOR) { system_set_exec_alarm(EXEC_ALARM_HOMING_FAIL_DOOR); }
// Homing failure condition: Limit switch still engaged after pull-off motion
if (!approach && (limits_get_state() & cycle_mask)) { system_set_exec_alarm(EXEC_ALARM_HOMING_FAIL_PULLOFF); }
// Homing failure condition: Limit switch not found during approach.
if (approach && (rt_exec & EXEC_CYCLE_STOP)) { system_set_exec_alarm(EXEC_ALARM_HOMING_FAIL_APPROACH); }
if (sys_rt_exec_alarm) {
mc_reset(); // Stop motors, if they are running.
protocol_execute_realtime();
return;
} else {
// Pull-off motion complete. Disable CYCLE_STOP from executing.
system_clear_exec_state_flag(EXEC_CYCLE_STOP);
break;
}
}
#ifdef ENABLE_DUAL_AXIS
} while ((STEP_MASK & axislock) || (sys.homing_axis_lock_dual));
#else
} while (STEP_MASK & axislock);
#endif
st_reset(); // Immediately force kill steppers and reset step segment buffer.
delay_ms(settings.homing_debounce_delay); // Delay to allow transient dynamics to dissipate.
// Reverse direction and reset homing rate for locate cycle(s).
approach = !approach;
// After first cycle, homing enters locating phase. Shorten search to pull-off distance.
if (approach) {
max_travel = settings.homing_pulloff*HOMING_AXIS_LOCATE_SCALAR;
homing_rate = settings.homing_feed_rate;
} else {
max_travel = settings.homing_pulloff;
homing_rate = settings.homing_seek_rate;
}
} while (n_cycle-- > 0);
// The active cycle axes should now be homed and machine limits have been located. By
// default, Grbl defines machine space as all negative, as do most CNCs. Since limit switches
// can be on either side of an axes, check and set axes machine zero appropriately. Also,
// set up pull-off maneuver from axes limit switches that have been homed. This provides
// some initial clearance off the switches and should also help prevent them from falsely
// triggering when hard limits are enabled or when more than one axes shares a limit pin.
int32_t set_axis_position;
// Set machine positions for homed limit switches. Don't update non-homed axes.
for (idx=0; idx<N_AXIS; idx++) {
// NOTE: settings.max_travel[] is stored as a negative value.
if (cycle_mask & bit(idx)) {
#ifdef HOMING_FORCE_SET_ORIGIN
set_axis_position = 0;
#else
if ( bit_istrue(settings.homing_dir_mask,bit(idx)) ) {
set_axis_position = lround((settings.max_travel[idx]+settings.homing_pulloff)*settings.steps_per_mm[idx]);
} else {
set_axis_position = lround(-settings.homing_pulloff*settings.steps_per_mm[idx]);
}
#endif
#ifdef COREXY
if (idx==X_AXIS) {
int32_t off_axis_position = system_convert_corexy_to_y_axis_steps(sys_position);
sys_position[A_MOTOR] = set_axis_position + off_axis_position;
sys_position[B_MOTOR] = set_axis_position - off_axis_position;
} else if (idx==Y_AXIS) {
int32_t off_axis_position = system_convert_corexy_to_x_axis_steps(sys_position);
sys_position[A_MOTOR] = off_axis_position + set_axis_position;
sys_position[B_MOTOR] = off_axis_position - set_axis_position;
} else {
sys_position[idx] = set_axis_position;
}
#else
sys_position[idx] = set_axis_position;
#endif
}
}
sys.step_control = STEP_CONTROL_NORMAL_OP; // Return step control to normal operation.
}
// Performs a soft limit check. Called from mc_line() only. Assumes the machine has been homed,
// the workspace volume is in all negative space, and the system is in normal operation.
// NOTE: Used by jogging to limit travel within soft-limit volume.
void limits_soft_check(float *target)
{
if (system_check_travel_limits(target)) {
sys.soft_limit = true;
// Force feed hold if cycle is active. All buffered blocks are guaranteed to be within
// workspace volume so just come to a controlled stop so position is not lost. When complete
// enter alarm mode.
if (sys.state == STATE_CYCLE) {
system_set_exec_state_flag(EXEC_FEED_HOLD);
do {
protocol_execute_realtime();
if (sys.abort) { return; }
} while ( sys.state != STATE_IDLE );
}
mc_reset(); // Issue system reset and ensure spindle and coolant are shutdown.
system_set_exec_alarm(EXEC_ALARM_SOFT_LIMIT); // Indicate soft limit critical event
protocol_execute_realtime(); // Execute to enter critical event loop and system abort
return;
}
}