-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmemory_agent.py
667 lines (482 loc) · 22.9 KB
/
memory_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
# ===============================================
# Agent with Long Term Memory in LangGraph
# ===============================================
# -----------------------------------------------
# Load environment variables
# -----------------------------------------------
from dotenv import load_dotenv
load_dotenv()
# -----------------------------------------------
# Defining a Collection Schema
# -----------------------------------------------
from pydantic import BaseModel, Field
class Memory(BaseModel):
content: str = Field(description="The main content of the memory. For example: User expressed interest in learning about French.")
class MemoryCollection(BaseModel):
memories: list[Memory] = Field(description="A list of memories about the user.")
# Add a listener to the Trustcall extractor.
from trustcall import create_extractor
from langchain_openai import ChatOpenAI
# Inspect the tool calls made by Trustcall
class Spy:
def __init__(self):
self.called_tools = []
def __call__(self, run):
# Collect information about the tool calls made by the extractor.
q = [run]
while q:
r = q.pop()
if r.child_runs:
q.extend(r.child_runs)
if r.run_type == "chat_model":
self.called_tools.append(
r.outputs["generations"][0][0]["message"]["kwargs"]["tool_calls"]
)
# Initialize the spy
spy = Spy()
# Initialize the model
model = ChatOpenAI(model="gpt-4o", temperature=0)
# Create the extractor
trustcall_extractor = create_extractor(
model,
tools=[Memory],
tool_choice="Memory",
enable_inserts=True,
)
# Add the spy as a listener
trustcall_extractor_see_all_tool_calls = trustcall_extractor.with_listeners(on_end=spy)
# -----------------------------------------------
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage
# Instruction
instruction = """Extract memories from the following conversation:"""
# Conversation
conversation = [HumanMessage(content="Hi, I'm Sushant."),
AIMessage(content="Nice to meet you, Sushant."),
HumanMessage(content="This morning I had a nice drive in Pune.")]
# Invoke the extractor
result = trustcall_extractor.invoke({"messages": [SystemMessage(content=instruction)] + conversation})
# Messages contain the tool calls
for m in result["messages"]:
m.pretty_print()
# Responses contain the memories that adhere to the schema
for m in result["responses"]:
print(m)
# Metadata contains the tool call
for m in result["response_metadata"]:
print(m)
# -----------------------------------------------
# Update the conversation
updated_conversation = [AIMessage(content="That's great, did you do after?"),
HumanMessage(content="I went to Marz-O-Rin and ate a croissant."),
AIMessage(content="What else is on your mind?"),
HumanMessage(content="I was thinking about my New Zealand, and going back this winter!"),]
# Update the instruction
system_msg = """Update existing memories and create new ones based on the following conversation:"""
# We'll save existing memories, giving them an ID, key (tool name), and value
tool_name = "Memory"
existing_memories = [(str(i), tool_name, memory.model_dump()) for i, memory in enumerate(result["responses"])] if result["responses"] else None
existing_memories
# Invoke the extractor with our updated conversation and existing memories
result = trustcall_extractor_see_all_tool_calls.invoke({"messages": updated_conversation,
"existing": existing_memories})
# Metadata contains the tool call
for m in result["response_metadata"]:
print(m)
# Messages contain the tool calls
for m in result["messages"]:
m.pretty_print()
# Parsed responses
for m in result["responses"]:
print(m)
# Inspect the tool calls made by Trustcall
spy.called_tools
# -----------------------------------------------
def extract_tool_info(tool_calls, schema_name="Memory"):
"""Extract information from tool calls for both patches and new memories.
Args:
tool_calls: List of tool calls from the model
schema_name: Name of the schema tool (e.g., "Memory", "ToDo", "Profile")
"""
# Initialize list of changes
changes = []
for call_group in tool_calls:
for call in call_group:
if call['name'] == 'PatchDoc':
changes.append({
'type': 'update',
'doc_id': call['args']['json_doc_id'],
'planned_edits': call['args']['planned_edits'],
'value': call['args']['patches'][0]['value']
})
elif call['name'] == schema_name:
changes.append({
'type': 'new',
'value': call['args']
})
# Format results as a single string
result_parts = []
for change in changes:
if change['type'] == 'update':
result_parts.append(
f"Document {change['doc_id']} updated:\n"
f"Plan: {change['planned_edits']}\n"
f"Added content: {change['value']}"
)
else:
result_parts.append(
f"New {schema_name} created:\n"
f"Content: {change['value']}"
)
return "\n\n".join(result_parts)
# Inspect spy.called_tools to see exactly what happened during the extraction
schema_name = "Memory"
changes = extract_tool_info(spy.called_tools, schema_name)
# print(changes)
# -----------------------------------------------
# Creating an Agent
# -----------------------------------------------
from typing import TypedDict, Literal
# Update memory tool
class UpdateMemory(TypedDict):
""" Decision on what memory type to update """
update_type: Literal['user', 'todo', 'instructions']
# -----------------------------------------------
# Graph Definition
import uuid
from IPython.display import Image, display
from datetime import datetime
from trustcall import create_extractor
from typing import Optional
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableConfig
from langchain_core.messages import merge_message_runs, HumanMessage, SystemMessage
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, MessagesState, END, START
from langgraph.store.base import BaseStore
from langgraph.store.memory import InMemoryStore
from langchain_openai import ChatOpenAI
# -------------------------------------
# Initialize the model
model = ChatOpenAI(model="gpt-4o", temperature=0)
# -------------------------------------
# User profile schema
class Profile(BaseModel):
"""
This is the profile of the user you are chatting with
"""
name: Optional[str] = Field(description="The user's name", default=None)
location: Optional[str] = Field(description="The user's location", default=None)
job: Optional[str] = Field(description="The user's job", default=None)
connections: list[str] = Field(
description="Personal connection of the user, such as family members, friends, or coworkers",
default_factory=list
)
interests: list[str] = Field(
description="Interests that the user has",
default_factory=list
)
# -------------------------------------
# ToDo schema
class ToDo(BaseModel):
task: str = Field(description="The task to be completed.")
time_to_complete: Optional[int] = Field(description="Estimated time to complete the task (minutes).")
deadline: Optional[datetime] = Field(
description="When the task needs to be completed by (if applicable)",
default=None
)
solutions: list[str] = Field(
description="List of specific, actionable solutions (e.g., specific ideas, service providers, or concrete options relevant to completing the task)",
min_items=1,
default_factory=list
)
status: Literal["not started", "in progress", "done", "archived"] = Field(
description="Current status of the task",
default="not started"
)
# -------------------------------------
# Create the Trustcall extractor for updating the user profile
profile_extractor = create_extractor(
model,
tools=[Profile],
tool_choice="Profile",
)
# -------------------------------------
# Chatbot instruction for choosing what to update and what tools to call
MODEL_SYSTEM_MESSAGE = """
You are a helpful chatbot.
You are designed to be a companion to a user, helping them keep track of their ToDo list.
You have a long term memory which keeps track of three things:
1. The user's profile (general information about them)
2. The user's ToDo list
3. General instructions for updating the ToDo list
Here is the current User Profile (may be empty if no information has been collected yet):
<user_profile>
{user_profile}
</user_profile>
Here is the current ToDo List (may be empty if no tasks have been added yet):
<todo>
{todo}
</todo>
Here are the current user-specified preferences for updating the ToDo list (may be empty if no preferences have been specified yet):
<instructions>
{instructions}
</instructions>
Here are your instructions for reasoning about the user's messages:
1. Reason carefully about the user's messages as presented below.
2. Decide whether any of the your long-term memory should be updated:
- If personal information was provided about the user, update the user's profile by calling UpdateMemory tool with type `user`
- If tasks are mentioned, update the ToDo list by calling UpdateMemory tool with type `todo`
- If the user has specified preferences for how to update the ToDo list, update the instructions by calling UpdateMemory tool with type `instructions`
3. Tell the user that you have updated your memory, if appropriate:
- Do not tell the user you have updated the user's profile
- Tell the user them when you update the todo list
- Do not tell the user that you have updated instructions
4. Err on the side of updating the todo list. No need to ask for explicit permission.
5. Respond naturally to user user after a tool call was made to save memories, or if no tool call was made.
"""
# -------------------------------------
# Trustcall instruction
TRUSTCALL_INSTRUCTION = """
Reflect on following interaction.
Use the provided tools to retain any necessary memories about the user.
Use parallel tool calling to handle updates and insertions simultaneously.
System Time: {time}
"""
# -------------------------------------
# Instructions for updating the ToDo list
CREATE_INSTRUCTIONS = """
Reflect on the following interaction.
Based on this interaction, update your instructions for how to update ToDo list items.
Use any feedback from the user to update how they like to have items added, etc.
Your current instructions are:
<current_instructions>
{current_instructions}
</current_instructions>
"""
# -------------------------------------
# Node definitions
def task_mAIstro(state: MessagesState, config: RunnableConfig, store: BaseStore):
"""Load memories from the store and use them to personalize the chatbot's response."""
# Get the user ID from the config
user_id = config["configurable"]["user_id"]
# Retrieve profile memory from the store
namespace = ("profile", user_id)
memories = store.search(namespace)
if memories:
user_profile = memories[0].value
else:
user_profile = None
# Retrieve task memory from the store
namespace = ("todo", user_id)
memories = store.search(namespace)
todo = "\n".join(f"{mem.value}" for mem in memories)
# Retrieve custom instructions
namespace = ("instructions", user_id)
memories = store.search(namespace)
if memories:
instructions = memories[0].value
else:
instructions = ""
system_msg = MODEL_SYSTEM_MESSAGE.format(user_profile=user_profile, todo=todo, instructions=instructions)
# Respond using memory as well as the chat history
response = model.bind_tools([UpdateMemory], parallel_tool_calls=False).invoke([SystemMessage(content=system_msg)]+state["messages"])
return {"messages": [response]}
# -------------------------------------
def update_profile(state: MessagesState, config: RunnableConfig, store: BaseStore):
"""Reflect on the chat history and update the memory collection."""
# Get the user ID from the config
user_id = config["configurable"]["user_id"]
# Define the namespace for the memories
namespace = ("profile", user_id)
# Retrieve the most recent memories for context
existing_items = store.search(namespace)
# Format the existing memories for the Trustcall extractor
tool_name = "Profile"
existing_memories = ([(existing_item.key, tool_name, existing_item.value)
for existing_item in existing_items]
if existing_items
else None
)
# Merge the chat history and the instruction
TRUSTCALL_INSTRUCTION_FORMATTED=TRUSTCALL_INSTRUCTION.format(time=datetime.now().isoformat())
updated_messages=list(merge_message_runs(messages=[SystemMessage(content=TRUSTCALL_INSTRUCTION_FORMATTED)] + state["messages"][:-1]))
# Invoke the extractor
result = profile_extractor.invoke({"messages": updated_messages,
"existing": existing_memories})
# Save the memories from Trustcall to the store
for r, rmeta in zip(result["responses"], result["response_metadata"]):
store.put(namespace,
rmeta.get("json_doc_id", str(uuid.uuid4())),
r.model_dump(mode="json"),
)
tool_calls = state['messages'][-1].tool_calls
return {"messages": [{"role": "tool", "content": "updated profile", "tool_call_id":tool_calls[0]['id']}]}
# -------------------------------------
def update_todos(state: MessagesState, config: RunnableConfig, store: BaseStore):
"""Reflect on the chat history and update the memory collection."""
# Get the user ID from the config
user_id = config["configurable"]["user_id"]
# Define the namespace for the memories
namespace = ("todo", user_id)
# Retrieve the most recent memories for context
existing_items = store.search(namespace)
# Format the existing memories for the Trustcall extractor
tool_name = "ToDo"
existing_memories = ([(existing_item.key, tool_name, existing_item.value)
for existing_item in existing_items]
if existing_items
else None
)
# Merge the chat history and the instruction
TRUSTCALL_INSTRUCTION_FORMATTED=TRUSTCALL_INSTRUCTION.format(time=datetime.now().isoformat())
updated_messages=list(merge_message_runs(messages=[SystemMessage(content=TRUSTCALL_INSTRUCTION_FORMATTED)] + state["messages"][:-1]))
# Initialize the spy for visibility into the tool calls made by Trustcall
spy = Spy()
# Create the Trustcall extractor for updating the ToDo list
todo_extractor = create_extractor(
model,
tools=[ToDo],
tool_choice=tool_name,
enable_inserts=True
).with_listeners(on_end=spy)
# Invoke the extractor
result = todo_extractor.invoke({"messages": updated_messages,
"existing": existing_memories})
# Save the memories from Trustcall to the store
for r, rmeta in zip(result["responses"], result["response_metadata"]):
store.put(namespace,
rmeta.get("json_doc_id", str(uuid.uuid4())),
r.model_dump(mode="json"),
)
# Respond to the tool call made in task_mAIstro, confirming the update
tool_calls = state['messages'][-1].tool_calls
# Extract the changes made by Trustcall and add the the ToolMessage returned to task_mAIstro
todo_update_msg = extract_tool_info(spy.called_tools, tool_name)
return {"messages": [{"role": "tool", "content": todo_update_msg, "tool_call_id":tool_calls[0]['id']}]}
# -------------------------------------
def update_instructions(state: MessagesState, config: RunnableConfig, store: BaseStore):
"""Reflect on the chat history and update the memory collection."""
# Get the user ID from the config
user_id = config["configurable"]["user_id"]
namespace = ("instructions", user_id)
existing_memory = store.get(namespace, "user_instructions")
# Format the memory in the system prompt
system_msg = CREATE_INSTRUCTIONS.format(current_instructions=existing_memory.value if existing_memory else None)
new_memory = model.invoke([SystemMessage(content=system_msg)]+state['messages'][:-1] + [HumanMessage(content="Please update the instructions based on the conversation")])
# Overwrite the existing memory in the store
key = "user_instructions"
store.put(namespace, key, {"memory": new_memory.content})
tool_calls = state['messages'][-1].tool_calls
return {"messages": [{"role": "tool", "content": "updated instructions", "tool_call_id":tool_calls[0]['id']}]}
# -------------------------------------
# Conditional edge
def route_message(state: MessagesState, config: RunnableConfig, store: BaseStore) -> Literal[END, "update_todos", "update_instructions", "update_profile"]:
"""Reflect on the memories and chat history to decide whether to update the memory collection."""
message = state['messages'][-1]
if len(message.tool_calls) ==0:
return END
else:
tool_call = message.tool_calls[0]
if tool_call['args']['update_type'] == "user":
return "update_profile"
elif tool_call['args']['update_type'] == "todo":
return "update_todos"
elif tool_call['args']['update_type'] == "instructions":
return "update_instructions"
else:
raise ValueError
# -------------------------------------
# Create the graph + all nodes
builder = StateGraph(MessagesState)
# Define the flow of the memory extraction process
builder.add_node(task_mAIstro)
builder.add_node(update_todos)
builder.add_node(update_profile)
builder.add_node(update_instructions)
builder.add_edge(START, "task_mAIstro")
builder.add_conditional_edges("task_mAIstro", route_message)
builder.add_edge("update_todos", "task_mAIstro")
builder.add_edge("update_profile", "task_mAIstro")
builder.add_edge("update_instructions", "task_mAIstro")
# Store for long-term (across-thread) memory
across_thread_memory = InMemoryStore()
# Checkpointer for short-term (within-thread) memory
within_thread_memory = MemorySaver()
# We compile the graph with the checkpointer and store
graph = builder.compile(checkpointer=within_thread_memory, store=across_thread_memory)
# View
display(Image(graph.get_graph(xray=1).draw_mermaid_png()))
# -------------------------------------
# We supply a thread ID for short-term (within-thread) memory
# We supply a user ID for long-term (across-thread) memory
config = {"configurable": {"thread_id": "1", "user_id": "Sushant"}}
# User input to create a profile memory
input_messages = [HumanMessage(content="My name is Sushant. I live in Pune with my wife. I have 2 daughters with age 12 and 15.")]
# Run the graph
for chunk in graph.stream({"messages": input_messages}, config, stream_mode="values"):
chunk["messages"][-1].pretty_print()
# -------------------------------------
# User input for a ToDo
input_messages = [HumanMessage(content="My wife asked me to book badminton lessons for my daughters.")]
# Run the graph
for chunk in graph.stream({"messages": input_messages}, config, stream_mode="values"):
chunk["messages"][-1].pretty_print()
# -------------------------------------
# User input to update instructions for creating ToDos
input_messages = [HumanMessage(content="When creating or updating ToDo items, include specific local businesses / vendors.")]
# Run the graph
for chunk in graph.stream({"messages": input_messages}, config, stream_mode="values"):
chunk["messages"][-1].pretty_print()
# -------------------------------------
# Check for updated instructions
user_id = "Sushant"
# Search
for memory in across_thread_memory.search(("instructions", user_id)):
print(memory.value)
# -------------------------------------
# User input for a ToDo
input_messages = [HumanMessage(content="I need to fix the jammed Yale lock on the door.")]
# Run the graph
for chunk in graph.stream({"messages": input_messages}, config, stream_mode="values"):
chunk["messages"][-1].pretty_print()
# -------------------------------------
# Namespace for the memory to save
user_id = "Sushant"
# Search
for memory in across_thread_memory.search(("todo", user_id)):
print(memory.value)
# -------------------------------------
# User input to update an existing ToDo
input_messages = [HumanMessage(content="For the badminton lessons, I need to get that done by end of June.")]
# Run the graph
for chunk in graph.stream({"messages": input_messages}, config, stream_mode="values"):
chunk["messages"][-1].pretty_print()
# -------------------------------------
# User input for a ToDo
input_messages = [HumanMessage(content="Need to call back Tata Motors to schedule car service.")]
# Run the graph
for chunk in graph.stream({"messages": input_messages}, config, stream_mode="values"):
chunk["messages"][-1].pretty_print()
# -------------------------------------
# Namespace for the memory to save
user_id = "Sushant"
# Search
for memory in across_thread_memory.search(("todo", user_id)):
print(memory.value)
# -------------------------------------
# New thread
# We supply a thread ID for short-term (within-thread) memory
# We supply a user ID for long-term (across-thread) memory
config = {"configurable": {"thread_id": "2", "user_id": "Sushant"}}
# Chat with the chatbot
input_messages = [HumanMessage(content="I have 30 minutes, what tasks can I get done?")]
# Run the graph
for chunk in graph.stream({"messages": input_messages}, config, stream_mode="values"):
chunk["messages"][-1].pretty_print()
# -------------------------------------
# Chat with the chatbot
input_messages = [HumanMessage(content="Yes, give me some options to call for badminton lessons.")]
# Run the graph
for chunk in graph.stream({"messages": input_messages}, config, stream_mode="values"):
chunk["messages"][-1].pretty_print()
# -----------------------------------------------