-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparallelization.py
315 lines (207 loc) · 8.03 KB
/
parallelization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# ===============================================
# Parallelization in Graph - Human in loop
# ===============================================
# -----------------------------------------------
# Load environment variables
# -----------------------------------------------
from dotenv import load_dotenv
load_dotenv()
# -----------------------------------------------
# Define the State class and return Value node
# -----------------------------------------------
from typing import Any
from typing_extensions import TypedDict
class State(TypedDict):
state : str
class ReturnNodeValue:
def __init__(self, node_secret : str):
self._value = node_secret
def __call__(self, state: State) -> Any:
print(f"Adding {self._value} to {state["state"]}")
return {"state" : [self._value]}
# -----------------------------------------------
# Create a Simple graph
# -----------------------------------------------
from langgraph.graph import StateGraph, START, END
from IPython.display import display, Image
builder = StateGraph(State)
builder.add_node("a", ReturnNodeValue("I am in A"))
builder.add_node("b", ReturnNodeValue("I am in B"))
builder.add_node("c", ReturnNodeValue("I am in C"))
builder.add_node("d", ReturnNodeValue("I am in D"))
builder.add_edge(START, "a")
builder.add_edge("a", "b")
builder.add_edge("b", "c")
builder.add_edge("c", "d")
builder.add_edge("d", END)
graph = builder.compile()
display(Image(graph.get_graph().draw_mermaid_png()))
# Let's invoke the graph
graph.invoke({"state" : []})
# -----------------------------------------------
# Let's fan-out from a to b and c and fan-in to d
# -----------------------------------------------
builder = StateGraph(State)
builder.add_node("a", ReturnNodeValue("I am in A"))
builder.add_node("b", ReturnNodeValue("I am in B"))
builder.add_node("c", ReturnNodeValue("I am in C"))
builder.add_node("d", ReturnNodeValue("I am in D"))
builder.add_edge(START, "a")
builder.add_edge("a", "b")
builder.add_edge("a", "c")
builder.add_edge("b", "d")
builder.add_edge("c", "d")
builder.add_edge("d", END)
graph = builder.compile()
display(Image(graph.get_graph().draw_mermaid_png()))
# -----------------------------------------------
# Let's invoke the graph
from langgraph.errors import InvalidUpdateError
try:
graph.invoke({"state" : []})
except InvalidUpdateError as e:
print(e)
# -----------------------------------------------
# Use operator.add to perform list concatenation
# -----------------------------------------------
import operator
from typing import Annotated
class State(TypedDict):
state : Annotated[list, operator.add]
builder = StateGraph(State)
builder.add_node("a", ReturnNodeValue("I am in A"))
builder.add_node("b", ReturnNodeValue("I am in B"))
builder.add_node("c", ReturnNodeValue("I am in C"))
builder.add_node("d", ReturnNodeValue("I am in D"))
builder.add_edge(START, "a")
builder.add_edge("a", "b")
builder.add_edge("a", "c")
builder.add_edge("b", "d")
builder.add_edge("c", "d")
builder.add_edge("d", END)
graph = builder.compile()
display(Image(graph.get_graph().draw_mermaid_png()))
# Let's invoke the graph
graph.invoke({"state" : []})
# -----------------------------------------------
# Waiting for nodes to finish
# One parallel path has more steps
# -----------------------------------------------
builder = StateGraph(State)
builder.add_node("a", ReturnNodeValue("I am in A"))
builder.add_node("b", ReturnNodeValue("I am in B"))
builder.add_node("b1", ReturnNodeValue("I am in B1"))
builder.add_node("c", ReturnNodeValue("I am in C"))
builder.add_node("d", ReturnNodeValue("I am in D"))
builder.add_edge(START, "a")
builder.add_edge("a", "b")
builder.add_edge("a", "c")
builder.add_edge("b", "b1")
builder.add_edge(["b1", "c"], "d")
builder.add_edge("d", END)
graph = builder.compile()
display(Image(graph.get_graph().draw_mermaid_png()))
# Let's invoke the graph
graph.invoke({"state" : []})
# -----------------------------------------------
# Setting the order of state updates
# -----------------------------------------------
def sorting_reducer(left, right):
if not isinstance(left, list):
left = [left]
if not isinstance(right, list):
right = [right]
return sorted(left + right, reverse=False)
class State(TypedDict):
state : Annotated[list, sorting_reducer]
builder = StateGraph(State)
builder.add_node("a", ReturnNodeValue("I am in A"))
builder.add_node("b", ReturnNodeValue("I am in B"))
builder.add_node("b1", ReturnNodeValue("I am in B1"))
builder.add_node("c", ReturnNodeValue("I am in C"))
builder.add_node("d", ReturnNodeValue("I am in D"))
builder.add_edge(START, "a")
builder.add_edge("a", "b")
builder.add_edge("a", "c")
builder.add_edge("b", "b1")
builder.add_edge(["b1", "c"], "d")
builder.add_edge("d", END)
graph = builder.compile()
display(Image(graph.get_graph().draw_mermaid_png()))
# Let's invoke the graph
graph.invoke({"state" : []})
# -----------------------------------------------
# Example - Working with LLMs
# -----------------------------------------------
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
# Define the state class
class State(TypedDict):
question : str
answer : str
context : Annotated[list, operator.add]
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.tools import TavilySearchResults
# Web Search
def search_web(state):
"""
Retrives documents from Web Search
"""
# Search
tavily_search = TavilySearchResults(max_results=3)
search_docs = tavily_search.invoke(state["question"])
# Format
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document href="{doc["url"]}"/>\n{doc["content"]}\n</Document>'
for doc in search_docs
]
)
return {"context" : [formatted_search_docs]}
# Wiki Search
def search_wikipedia(state):
"""
Retrives documents from Wikipedia
"""
# Search
search_docs = WikipediaLoader(query=state["question"],
load_max_docs=2).load()
# Format
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
]
)
return {"context" : [formatted_search_docs]}
# Node function to generate answer
def generate_answer(state):
""" Node to answer a question """
# Get state
context = state["context"]
question = state["question"]
# Template
answer_template = """Answer the question {question} using this context: {context}"""
answer_instructions = answer_template.format(question=question,
context=context)
# Answer
answer = llm.invoke([SystemMessage(content=answer_instructions)]+[HumanMessage(content=f"Answer the question.")])
# Append it to state
return {"answer": answer}
# Build the graph
builder = StateGraph(State)
builder.add_node("search_web", search_web)
builder.add_node("search_wikipedia", search_wikipedia)
builder.add_node("generate_answer", generate_answer)
builder.add_edge(START, "search_wikipedia")
builder.add_edge(START, "search_web")
builder.add_edge("search_wikipedia", "generate_answer")
builder.add_edge("search_web", "generate_answer")
builder.add_edge("generate_answer", END)
graph = builder.compile()
display(Image(graph.get_graph().draw_mermaid_png()))
# Let's invoke the graph
result = graph.invoke({"question" : "What is Grok LLM Model?", "context" : []})
result['answer'].content
# -----------------------------------------------