-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresearch_assistant.py
857 lines (589 loc) · 27.2 KB
/
research_assistant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
# ===============================================
# Research Assistant - LangGraph
# ===============================================
# -----------------------------------------------
# Loading Environment variables
# -----------------------------------------------
from dotenv import load_dotenv
load_dotenv
# -----------------------------------------------
# LLM Model
# -----------------------------------------------
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o", temperature=0)
# ***********************************************
# Generate Analyst - Structure and State
# ***********************************************
from pydantic import BaseModel, Field
from typing import List
from typing_extensions import TypedDict
class Analyst(BaseModel):
affiliation: str = Field(
description="Primary affiliation of the analyst.",
)
name: str = Field(
description="Name of the analyst."
)
role: str = Field(
description="Role of the analyst in the context of the topic.",
)
description: str = Field(
description="Description of the analyst focus, concerns, and motives.",
)
@property
def persona(self) -> str:
return f"Name: {self.name}\nRole: {self.role}\nAffiliation: {self.affiliation}\nDescription: {self.description}\n"
class Perspectives(BaseModel):
analysts: List[Analyst] = Field(
description="Comprehensive list of analysts with their roles and affiliations.",
)
class GenerateAnalystsState(TypedDict):
topic: str # Research topic
max_analysts: int # Maximum number of analysts
human_analyst_feedback: str # Human analyst feedback
analysts: List[Analyst] # List of analysts
# -----------------------------------------------
# Create Analysts
# -----------------------------------------------
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage
analyst_instructions = """
You are tasked with creating a set of AI analyst personas.
Follow these instructions carefully:
1. First, review the research topic:
{topic}
2. Examine any editorial feedback that has been optionally provided to guide creation of the analysts:
{human_analyst_feedback}
3. Determine the most interesting themes based upon documents and / or feedback above.
4. Pick the top {max_analysts} themes.
5. Assign one analyst to each theme.
"""
def create_analysts(state: GenerateAnalystsState):
"""
Create analysts based on the provided state.
"""
topic = state['topic']
max_analysts = state['max_analysts']
human_analyst_feedback = state.get('human_analyst_feedback', '')
# Enforce structured output
structured_llm = llm.with_structured_output(Perspectives)
# System message
system_message = analyst_instructions.format(topic=topic,
human_analyst_feedback=human_analyst_feedback,
max_analysts=max_analysts)
# Generate question
analysts = structured_llm.invoke([SystemMessage(content=system_message)]+[HumanMessage(content="Generate the set of analysts.")])
# Adding list of analysts to state
return {"analysts": analysts.analysts}
def human_feedback(state: GenerateAnalystsState):
"""
No-op node that should be interrupted on.
"""
pass
def should_continue(state: GenerateAnalystsState):
"""
Return the next node to execute.
"""
human_analyst_feedback = state.get('human_analyst_feedback', None)
if human_analyst_feedback:
return "create_analysts"
return END
# -----------------------------------------------
# Graph
# -----------------------------------------------
from langgraph.graph import StateGraph, START, END
from langgraph.checkpoint.memory import MemorySaver
from IPython.display import display, Image
# builder = StateGraph(GenerateAnalystsState)
# builder.add_node("create_analysts", create_analysts)
# builder.add_node("human_feedback", human_feedback)
# builder.add_edge(START, "create_analysts")
# builder.add_edge("create_analysts", "human_feedback")
# builder.add_conditional_edges("human_feedback", should_continue, ["create_analysts", END])
# # Compile using MemorySaver
# memory = MemorySaver()
# graph = builder.compile(interrupt_before=["human_feedback"], checkpointer=memory)
# # Visualize
# display(Image(graph.get_graph().draw_mermaid_png()))
# -----------------------------------------------
# Input and Graph execution
# -----------------------------------------------
# # Input
# topic = "The benefits of LLM agents."
# max_analysts = 3
# thread = {"configurable" : {"thread_id" : "2"}}
# # Graph execution
# for event in graph.stream({"topic" : topic, "max_analysts" : max_analysts}, thread, stream_mode="values"):
# # Review
# analysts = event.get('analysts', '')
# if analysts:
# for analyst in analysts:
# print(f"Name: {analyst.name}")
# print(f"Role: {analyst.role}")
# print(f"Affiliation: {analyst.affiliation}")
# print(f"Description: {analyst.description}")
# print("-" * 50)
# # Get state and check the next node
# state = graph.get_state(thread)
# state.next
# # Human feedback
# human_analyst_feedback = """
# I think we need to focus on the following themes:
# - AI Ethics
# - AI Safety
# - AI Bias
# - AI Accountability
# - AI Transparency
# """
# graph.update_state(thread, {"human_analyst_feedback" : human_analyst_feedback}, as_node="human_feedback")
# # Continue graph execution
# for event in graph.stream(None, thread, stream_mode="values"):
# # Review
# analysts = event.get('analysts', '')
# if analysts:
# for analyst in analysts:
# print(f"Name: {analyst.name}")
# print(f"Role: {analyst.role}")
# print(f"Affiliation: {analyst.affiliation}")
# print(f"Description: {analyst.description}")
# print("-" * 50)
# # Further human feedback
# further_human_feedback = None
# graph.update_state(thread, {"human_analyst_feedback" : further_human_feedback}, as_node="human_feedback")
# # Continue graph execution
# for event in graph.stream(None, thread, stream_mode="updates"):
# print("---- Node ----")
# node_name = next(iter(event.keys()))
# print(node_name)
# final_state = graph.get_state(thread)
# analyst = final_state.values.get('analysts')
# final_state.next
# for analyst in analyst:
# print(f"Name: {analyst.name}")
# print(f"Role: {analyst.role}")
# print(f"Affiliation: {analyst.affiliation}")
# print(f"Description: {analyst.description}")
# print("-" * 50)
# ***********************************************
# Conduct Interview - Structure and State
# ***********************************************
from langgraph.graph import MessagesState
from typing_extensions import Annotated
import operator
# Generate Question
class InterviewState(MessagesState):
max_num_turns: int # Number turns of conversation
context: Annotated[list, operator.add] # Source docs
analyst: Analyst # Analyst asking questions
interview: str # Interview transcript
sections: list
class SearchQuery(BaseModel):
search_query: str = Field(None, description="Search query for retrieval.")
question_instructions = """
You are an analyst tasked with interviewing an expert to learn about a specific topic.
Your goal is boil down to interesting and specific insights related to your topic.
1. Interesting: Insights that people will find surprising or non-obvious.
2. Specific: Insights that avoid generalities and include specific examples from the expert.
Here is your topic of focus and set of goals: {goals}
Begin by introducing yourself using a name that fits your persona, and then ask your question.
Continue to ask questions to drill down and refine your understanding of the topic.
When you are satisfied with your understanding, complete the interview with: "Thank you so much for your help!"
Remember to stay in character throughout your response, reflecting the persona and goals provided to you.
"""
def generate_question(state: InterviewState):
"""
Node to generate a question
"""
# Get state
analyst = state["analyst"]
messages = state["messages"]
# Generate question
system_message = question_instructions.format(goals=analyst.persona)
question = llm.invoke([SystemMessage(content=system_message)]+messages)
# Write messages to state
return {"messages": [question]}
# -----------------------------------------------
# Tools to generate Answer
# -----------------------------------------------
# Using web search tool
from langchain_community.tools.tavily_search import TavilySearchResults
tavily_search = TavilySearchResults(max_results=3)
# Using Wikipedia search tool
from langchain_community.document_loaders import WikipediaLoader
from langchain_core.messages import get_buffer_string
# Search query prompt
search_instructions = """
You will be given a conversation between an analyst and an expert.
Your goal is to generate a well-structured query for use in retrieval and / or web-search related to the conversation.
First, analyze the full conversation.
Pay particular attention to the final question posed by the analyst.
Convert this final question into a well-structured web search query.
"""
def search_web(state: InterviewState):
"""
Retrieve documents from web search
"""
# Search Query
structured_llm = llm.with_structured_output(SearchQuery)
search_query = structured_llm.invoke([SystemMessage(content=search_instructions)] + state["messages"])
# Search
search_docs = tavily_search.invoke(search_query.search_query)
# Format
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document href="{doc["url"]}"/>\n{doc["content"]}\n</Document>'
for doc in search_docs
]
)
return {"context": [formatted_search_docs]}
def search_wikipedia(state: InterviewState):
"""
Retrieve documents from wikipedia
"""
# Search Query
structured_llm = llm.with_structured_output(SearchQuery)
search_query = structured_llm.invoke([SystemMessage(content=search_instructions)] + state["messages"])
# Search
search_docs = WikipediaLoader(query=search_query.search_query,
load_max_docs=2).load()
# Format
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
]
)
return {"context": [formatted_search_docs]}
# -----------------------------------------------
# Generate Answer
# -----------------------------------------------
answer_instructions = """
You are an expert being interviewed by an analyst.
Here is analyst area of focus: {goals}.
You goal is to answer a question posed by the interviewer.
To answer question, use this context:
{context}
When answering questions, follow these guidelines:
1. Use only the information provided in the context.
2. Do not introduce external information or make assumptions beyond what is explicitly stated in the context.
3. The context contain sources at the topic of each individual document.
4. Include these sources your answer next to any relevant statements. For example, for source # 1 use [1].
5. List your sources in order at the bottom of your answer. [1] Source 1, [2] Source 2, etc
6. If the source is: <Document source="assistant/docs/llama3_1.pdf" page="7"/>' then just list:
[1] assistant/docs/llama3_1.pdf, page 7
And skip the addition of the brackets as well as the Document source preamble in your citation.
"""
def generate_answer(state: InterviewState):
"""
Node to answer a question
"""
# Get state
analyst = state["analyst"]
messages = state["messages"]
context = state["context"]
# Generate answer
system_message = answer_instructions.format(goals=analyst.persona, context=context)
answer = llm.invoke([SystemMessage(content=system_message)] + messages)
# Name the message as coming from the expert
answer.name = "expert"
# Append it to state
return {"messages": [answer]}
def save_interview(state: InterviewState):
"""
Node to save the interview
"""
# Get Messages
messages = state["messages"]
# Convert interview to a string
interview = get_buffer_string(messages)
# Save to interviews key
return {"interview": interview}
def route_messages(state: InterviewState, name: str = "expert"):
"""
Route between question and answer
"""
# Get messages
messages = state["messages"]
max_num_turns = state.get('max_num_turns', 2)
# Check the number of expert answers
num_responses = len(
[m for m in messages if isinstance(m, AIMessage) and m.name == name]
)
# End if expert has answered more than the max turns
if num_responses >= max_num_turns:
return 'save_interview'
# This router is run after each question - answer pair
# Get the last question asked to check if it signals the end of discussion
last_question = messages[-2]
if "Thank you so much for your help" in last_question.content:
return 'save_interview'
return "ask_question"
# -----------------------------------------------
# Writing answer sections
# -----------------------------------------------
section_writer_instructions = """
You are an expert technical writer.
Your task is to create a short, easily digestible section of a report based on a set of source documents.
1. Analyze the content of the source documents:
- The name of each source document is at the start of the document, with the <Document tag.
2. Create a report structure using markdown formatting:
- Use ## for the section title
- Use ### for sub-section headers
3. Write the report following this structure:
a. Title (## header)
b. Summary (### header)
c. Sources (### header)
4. Make your title engaging based upon the focus area of the analyst:
{focus}
5. For the summary section:
- Set up summary with general background / context related to the focus area of the analyst
- Emphasize what is novel, interesting, or surprising about insights gathered from the interview
- Create a numbered list of source documents, as you use them
- Do not mention the names of interviewers or experts
- Aim for approximately 400 words maximum
- Use numbered sources in your report (e.g., [1], [2]) based on information from source documents
6. In the Sources section:
- Include all sources used in your report
- Provide full links to relevant websites or specific document paths
- Separate each source by a newline. Use two spaces at the end of each line to create a newline in Markdown.
- It will look like:
### Sources
[1] Link or Document name
[2] Link or Document name
7. Be sure to combine sources. For example this is not correct:
[3] https://ai.meta.com/blog/meta-llama-3-1/
[4] https://ai.meta.com/blog/meta-llama-3-1/
There should be no redundant sources. It should simply be:
[3] https://ai.meta.com/blog/meta-llama-3-1/
8. Final review:
- Ensure the report follows the required structure
- Include no preamble before the title of the report
- Check that all guidelines have been followed
"""
def write_section(state: InterviewState):
"""
Node to answer a question
"""
# Get state
interview = state["interview"]
analyst = state["analyst"]
context = state["context"]
# Write section using either the gathered source docs from interview (context) or the interview itself (interview)
system_message = section_writer_instructions.format(focus=analyst.description)
section = llm.invoke([SystemMessage(content=system_message)]+[HumanMessage(content=f"Use this source to write your section: {context}")])
# Append it to state
return {"sections": [section.content]}
# -----------------------------------------------
# Graph construction
# -----------------------------------------------
# Grpah
interview_builder = StateGraph(InterviewState)
# Nodes
interview_builder.add_node("ask_question", generate_question)
interview_builder.add_node("search_web", search_web)
interview_builder.add_node("search_wikipedia", search_wikipedia)
interview_builder.add_node("answer_question", generate_answer)
interview_builder.add_node("save_interview", save_interview)
interview_builder.add_node("write_section", write_section)
# Edges
interview_builder.add_edge(START, "ask_question")
interview_builder.add_edge("ask_question", "search_web")
interview_builder.add_edge("ask_question", "search_wikipedia")
interview_builder.add_edge("search_web", "answer_question")
interview_builder.add_edge("search_wikipedia", "answer_question")
interview_builder.add_conditional_edges("answer_question", route_messages, ["ask_question", "save_interview"])
interview_builder.add_edge("save_interview", "write_section")
interview_builder.add_edge("write_section", END)
# Interview
memory = MemorySaver()
interview_graph = interview_builder.compile(checkpointer=memory).with_config(run_name="Conduct Interview")
# Visualize the graph
display(Image(interview_graph.get_graph().draw_mermaid_png()))
# # -----------------------------------------------
# # Let's try to run interview using Analyst 1
# from IPython.display import Markdown
# messages = [HumanMessage(f"So you said you were writing an article on {topic}?")]
# thread = {"configurable": {"thread_id": "1"}}
# interview = interview_graph.invoke({"analyst": analysts[0], "messages": messages, "max_num_turns": 2}, thread)
# Markdown(interview['sections'][0])
# -----------------------------------------------
# Parallel Interviews using Map-Reduce
# -----------------------------------------------
class ResearchGraphState(TypedDict):
topic: str # Reserch topic
max_analysts: int # Maximum number of analysts
human_analyst_feedback: str # Feedback from human
analysts: List[Analyst] # List of analysts asking questions
sections: Annotated[list, operator.add] # List of sections
introduction: str # Introduction for the final report
content: str # Content for the final report
conclusion: str # Conclusion for the final report
final_report: str # Final report
from langgraph.constants import Send
def initiate_all_interviews(state: ResearchGraphState):
"""
Conditional edge to initiate all interviews via Send() API or return to create_analysts
"""
# Check if human feedback
human_analyst_feedback = state.get('human_analyst_feedback')
if human_analyst_feedback:
# Return to create_analysts
return "create_analysts"
else:
# Otherwise kick off interviews in parallel via Send() API
topic = state["topic"]
return [Send("conduct_interview", {"analyst": analyst,
"messages": [HumanMessage(
content=f"So you said you were writing an article on {topic}?"
)
]}) for analyst in state["analysts"]]
# Report Writer
report_writer_instructions = """
You are a technical writer creating a report on this overall topic:
{topic}
You have a team of analysts. Each analyst has done two things:
1. They conducted an interview with an expert on a specific sub-topic.
2. They write up their finding into a memo.
Your task:
1. You will be given a collection of memos from your analysts.
2. Think carefully about the insights from each memo.
3. Consolidate these into a crisp overall summary that ties together the central ideas from all of the memos.
4. Summarize the central points in each memo into a cohesive single narrative.
To format your report:
1. Use markdown formatting.
2. Include no pre-amble for the report.
3. Use no sub-heading.
4. Start your report with a single title header: ## Insights
5. Do not mention any analyst names in your report.
6. Preserve any citations in the memos, which will be annotated in brackets, for example [1] or [2].
7. Create a final, consolidated list of sources and add to a Sources section with the `## Sources` header.
8. List your sources in order and do not repeat.
[1] Source 1
[2] Source 2
Here are the memos from your analysts to build your report from:
{context}
"""
def write_report(state: ResearchGraphState):
# Full set of sections
sections = state["sections"]
topic = state["topic"]
# Concat all sections together
formatted_str_sections = "\n\n".join([f"{section}" for section in sections])
# Summarize the sections into a final report
system_message = report_writer_instructions.format(topic=topic, context=formatted_str_sections)
report = llm.invoke([SystemMessage(content=system_message)]+[HumanMessage(content=f"Write a report based upon these memos.")])
return {"content": report.content}
# Introduction Writer
intro_conclusion_instructions = """
You are a technical writer finishing a report on {topic}
You will be given all of the sections of the report.
You job is to write a crisp and compelling introduction or conclusion section.
The user will instruct you whether to write the introduction or conclusion.
Include no pre-amble for either section.
Target around 100 words, crisply previewing (for introduction) or recapping (for conclusion) all of the sections of the report.
Use markdown formatting.
For your introduction, create a compelling title and use the # header for the title.
For your introduction, use ## Introduction as the section header.
For your conclusion, use ## Conclusion as the section header.
Here are the sections to reflect on for writing: {formatted_str_sections}
"""
def write_introduction(state: ResearchGraphState):
# Full set of sections
sections = state["sections"]
topic = state["topic"]
# Concat all sections together
formatted_str_sections = "\n\n".join([f"{section}" for section in sections])
# Summarize the sections into a final report
instructions = intro_conclusion_instructions.format(topic=topic, formatted_str_sections=formatted_str_sections)
intro = llm.invoke([instructions]+[HumanMessage(content=f"Write the report introduction")])
return {"introduction": intro.content}
def write_conclusion(state: ResearchGraphState):
# Full set of sections
sections = state["sections"]
topic = state["topic"]
# Concat all sections together
formatted_str_sections = "\n\n".join([f"{section}" for section in sections])
# Summarize the sections into a final report
instructions = intro_conclusion_instructions.format(topic=topic, formatted_str_sections=formatted_str_sections)
conclusion = llm.invoke([instructions]+[HumanMessage(content=f"Write the report conclusion")])
return {"conclusion": conclusion.content}
def finalize_report(state: ResearchGraphState):
""""
This is the "reduce" step where we gather all the sections, combine them,
and reflect on them to write the intro/conclusion
"""
# Save full final report
content = state["content"]
if content.startswith("## Insights"):
content = content.strip("## Insights")
if "## Sources" in content:
try:
content, sources = content.split("\n## Sources\n")
except:
sources = None
else:
sources = None
final_report = state["introduction"] + "\n\n---\n\n" + content + "\n\n---\n\n" + state["conclusion"]
if sources is not None:
final_report += "\n\n## Sources\n" + sources
return {"final_report": final_report}
# -----------------------------------------------
# Graph construction
# -----------------------------------------------
builder = StateGraph(ResearchGraphState)
# Add nodes
builder.add_node("create_analysts", create_analysts)
builder.add_node("human_feedback", human_feedback)
builder.add_node("conduct_interview", interview_builder.compile())
builder.add_node("write_report", write_report)
builder.add_node("write_introduction", write_introduction)
builder.add_node("write_conclusion", write_conclusion)
builder.add_node("finalize_report", finalize_report)
# Add Edges
builder.add_edge(START, "create_analysts")
builder.add_edge("create_analysts", "human_feedback")
builder.add_conditional_edges("human_feedback", initiate_all_interviews, ["create_analysts", "conduct_interview"])
builder.add_edge("conduct_interview", "write_report")
builder.add_edge("conduct_interview", "write_introduction")
builder.add_edge("conduct_interview", "write_conclusion")
builder.add_edge(["write_conclusion", "write_report", "write_introduction"], "finalize_report")
builder.add_edge("finalize_report", END)
# Compile
memory = MemorySaver()
graph = builder.compile(interrupt_before=['human_feedback'], checkpointer=memory)
# Visualize the graph
display(Image(graph.get_graph(xray=1).draw_mermaid_png()))
# -----------------------------------------------
# Let's run the graph with an open-ended question
# -----------------------------------------------
# Inputs
max_analysts = 3
topic = "The benefits of adopting LangGraph as an agent framework"
thread = {"configurable": {"thread_id": "1"}}
# Run the graph until the first interruption
for event in graph.stream({"topic":topic,
"max_analysts":max_analysts},
thread,
stream_mode="values"):
analysts = event.get('analysts', '')
if analysts:
for analyst in analysts:
print(f"Name: {analyst.name}")
print(f"Affiliation: {analyst.affiliation}")
print(f"Role: {analyst.role}")
print(f"Description: {analyst.description}")
print("-" * 50)
# Human feedback
graph.update_state(thread, {"human_analyst_feedback": None}, as_node="human_feedback")
# Continue the graph execution
for event in graph.stream(None, thread, stream_mode="updates"):
print("----Node----")
node_name = next(iter(event.keys()))
print(node_name)
# **********************************************
# Final report
# **********************************************
from IPython.display import Markdown
final_state = graph.get_state(thread)
report = final_state.values.get('final_report')
Markdown(report)
# -----------------------------------------------