-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathimageslurper.py
455 lines (361 loc) · 14.9 KB
/
imageslurper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import datetime
import pickle
import time
import logging
log = logging.getLogger(__name__)
from os.path import basename
import IPython.display
import PIL.Image
import PIL.ImageChops
import PIL.ImageDraw
import PIL.ImageOps
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import ListedColormap
__version__ = "1.1.2"
def auto_crop(image, threshold=200, show_steps=False):
"""
Automatically crop image if background is black or white.
:param image: Image
:param threshold: Adjustable threshold value
:param show_steps: Show image processing steps
:return:
"""
difference = PIL.ImageChops.difference(image,
PIL.ImageOps.colorize(PIL.ImageOps.grayscale(image),
black=(0, 0, 0),
white=(255, 255, 255)))
if show_steps:
IPython.display.display('Difference', difference)
difference = PIL.ImageChops.add(difference, difference, 2.0, -threshold)
if show_steps:
IPython.display.display('Difference', difference)
bbox = difference.getbbox()
return image.crop(bbox)
def auto_rotate(image, angle=-90):
"""
Rotate image if it is taller than it is wide.
:param image: Image
:param angle: Rotation angle (-90 for clockwise rotation)
:return: rotated image
"""
width, height = image.size
if height > width:
return image.rotate(angle, expand=True)
else:
return image
def auto_resize(image, max_pixels=1e99, resample=PIL.Image.NEAREST):
"""
Proportionally rescale image if it is larger than max_pixels
:param image: image
:param max_pixels: max number of pixels
:param resample: resampling method
:return: scaled image
"""
image_size = np.asarray(image.size)
image_pixels = np.prod(image_size)
scaling_factor = np.sqrt(image_pixels / max_pixels)
if scaling_factor < 1:
return image
else:
new_size = np.floor(image_size / scaling_factor).astype(int)
return image.resize(new_size, resample)
def auto_scale(nearest_indices, residual_norm, colorbar_data, xlim, ylim, clim):
"""
Scale the image given by unmap_nearest to the original image's colorbar units and axis units.
:param nearest_indices: image produced by unmap_image
:param residual_norm: residuals produced by unmap_image
:param colorbar_data: pixel image of the colorbar
:param xlim: original image x-axis limits
:param ylim: original image y-axis limits
:param clim: original image colorbar limits.
:return: vector of x positions, vector of y positions, scaled image and error estimate.
"""
colorbar_length_pixels = colorbar_data.shape[0] - 1
vmin, vmax = clim[0], clim[1]
scaled_image = nearest_indices / colorbar_length_pixels * (vmax - vmin) + vmin
scaled_error = residual_norm / colorbar_length_pixels * (vmax - vmin)
if np.any(np.isnan(scaled_image)):
log.warning("Found NaN values in reconstructed image.")
if np.any(np.isnan(scaled_error)):
log.warning("Found NaN values in reconstructed image error.")
x = np.linspace(xlim[0], xlim[1], scaled_image.shape[1])
y = np.linspace(ylim[0], ylim[1], scaled_image.shape[0])
return x, y, scaled_image, scaled_error
def auto_hole_fill(data, error, threshold, radius=5):
"""
A basic hole filling algorithm. Pixels whose error is larger than the error threshold
are replaced by the median of their neighbours.
:param data: image data
:param error: error data
:param threshold: error threshold
:param radius: radius in which to take median
:return: filled image
"""
data_padded = np.empty([i + 2 * radius for i in data.shape])
data_padded.fill(np.nan)
data_padded[radius:-radius, radius:-radius] = data
data_padded[radius:-radius, radius:-radius][error > threshold] = np.nan
result = data
ids = np.where(error > threshold)
ids = np.array(ids)
for x_id, y_id in ids.T:
x_id += radius
y_id += radius
result[x_id - radius, y_id - radius] = \
np.nanmedian(data_padded[x_id - radius:x_id + radius, y_id - radius:y_id + radius])
return result
def make_header(file, size):
"""
Make a header for csv output.
:param file: Original input file name.
:param size: Image dimensions.
:return: header as string.
"""
now = datetime.datetime.now()
string = ""
string += "Created on %s from file \"%s\" \n" % (now, file)
string += "using https://github.com/svaberg/imageslurper version %s\n" % __version__
string += "Image dimensions " + str(size)
return string
# See https://stackoverflow.com/questions/43843381/digitize-a-colormap
def unmap_nearest(image, colorbar, norm_order):
"""
For each pixel in the image, find the index of the pixel in the colormap whose color value is closest
in the provided norm.
The image should by a numpy array of shape (..., c) and the colorbar is a numpy array of shape (k, c).
The last dimension is assumed to be color (i.e. RGB) dimension
The algorithm uses brute force to find the closest color of each input pixel.
:param image: plot area image of shape (..., c)
:param colorbar: colorbar color values of shape (k, c)
:param norm_order: order of vector norm used to calculate color distance.
:return: array of colorbar pixel indices of shape (...) with values in [0, k-1]
"""
# Fully expanded distance array of shape (k, ..., 3).
rgb_distances = np.linalg.norm(np.abs(image[np.newaxis, ...] - colorbar[:, np.newaxis, :]),
ord=norm_order,
axis=-1)
# Minimum taken over k (axis 0).
min_index = np.argmin(rgb_distances, axis=0)
return min_index
def buffered_unmap(image, colorbar, chunk_size=1000, updater=None, norm_order=1):
"""
Buffering wrapper for unmap_nearest.
For larger images unmap_nearest may run out of memory. The buffered wrapper flattens the input
array over all axes but the color axis and processes the flattened image in chunks.
:param image: plot area image of shape (..., c)
:param colorbar: colorbar color values of shape (k, c)
:param chunk_size: buffer size in pixels
:param updater: coroutine that can be used for progress monitoring
:param norm_order: order of vector norm used to calculate color distance.
:return:
"""
if updater is not None:
next(updater)
small_negative = -1
unmapped_image = np.ones(image.shape[:2], dtype=int) * small_negative
rec_flat = unmapped_image.ravel()
img_flat = image.reshape(-1, 3)
pixel_id = 0
while pixel_id <= unmapped_image.size:
_slice = np.s_[pixel_id:pixel_id + chunk_size]
rec_flat[_slice] = unmap_nearest(img_flat[_slice], colorbar, norm_order)
if updater:
updater.send(unmapped_image)
pixel_id += chunk_size
if updater:
updater.send(unmapped_image)
updater.close()
return unmapped_image
def save_pickle(file, unmapped_filled_image, colorbar_data):
"""
Helper function to save the unmapped image as a Python picke file.
Saves the image data and the colorbar data.
:param file: input file name
:param unmapped_filled_image: image data
:param colorbar_data: colorbar data
:return: name of pickle file
"""
save_file = basename(file) + "-slurped.p"
with open(save_file, 'wb') as save_handle:
pickle.dump([unmapped_filled_image, colorbar_data],
save_handle,
protocol=pickle.HIGHEST_PROTOCOL)
# This reads the objects back:
with open(save_file, 'rb') as load_handle:
unmapped_filled_image, colorbar_data = pickle.load(load_handle)
return save_file
def text_updater(file, update_freq=1):
"""
Coroutine that prints the completion percentage of buffered_unmap
:param file: input file name
:param update_freq: update frequency in seconds.
:return:
"""
img = yield
last_update = time.time()
while True:
img = yield
if img[-1, -1] < 0 and last_update + update_freq > time.time():
continue
print("File " + file + " %4.2f%% complete." % (100 * np.count_nonzero(np.where(img >= 0)[0]) / img.size))
last_update = time.time()
def plot_input(image_data, colorbar_image_data, axs):
"""
Create a plot of the input image and the colorbar image data.
:param image_data: image data
:param colorbar_image_data: colorbar image data
:param axs: plot axes
:return:
"""
ax = axs[0]
ax.imshow(image_data)
ax.set_title("Image array shape " + str(image_data.shape))
ax.set_xlabel('Pixels')
ax.set_ylabel('Pixels')
ax = axs[1]
ax.imshow(colorbar_image_data, interpolation='nearest', aspect='auto')
ax2 = ax.twinx()
for _id, color in enumerate('rgb'):
x = np.arange(0, len(colorbar_image_data[0, :, 0]))
ax2.fill_between(x, y1=np.min(colorbar_image_data[..., _id], axis=0),
y2=np.max(colorbar_image_data[..., _id], axis=0), color=color, alpha=.25)
ax2.plot(x, np.median(colorbar_image_data[..., _id], axis=0), color=color)
ax.invert_yaxis()
ax.set_title("Colorbar image shape " + str(colorbar_image_data.shape))
ax2.set_ylim(0, 256)
ax2.set_yticks(np.linspace(0, 256, 9))
ax.set_xlim(0, len(colorbar_image_data[0, :, 0]))
ax2.set_ylabel('RGB intensity range and median')
ax.set_xlabel('Pixels')
ax.set_ylabel('Pixels')
def autoslurp(file,
map_corners,
colorbar_corners,
error_threshold=None,
xlim=(0, 1),
ylim=(0, 1),
clim=(0, 1),
norm_order=2,
updater=None,
):
"""
Convenience function that goes through the full process.
:param file: image input file
:param map_corners: pixel corners of the plot area
:param colorbar_corners: pixel corners of the colorbar area
:param error_threshold: error threshold for hole filling
:param xlim: plot x axis limits
:param ylim: plot y axis limits
:param clim: plot colorbar limits
:param norm_order: order of vector norm used to calculate color distance.
:param updater: Coroutine that prints the completion percentage of buffered_unmap
:return:
"""
if updater is None:
updater = text_updater(file)
full_image = PIL.Image.open(file)
map_image = full_image.crop(map_corners)
colorbar_image = full_image.crop(colorbar_corners)
map_image = auto_crop(map_image, threshold=100, show_steps=False)
colorbar_image = auto_crop(colorbar_image, threshold=100, show_steps=False)
colorbar_image = auto_rotate(colorbar_image)
image_data = np.asarray(map_image)
if np.any(np.isnan(image_data)):
log.warning("Found NaN values in plot area rgb image.")
colorbar_image_data = np.asarray(colorbar_image)
if np.any(np.isnan(colorbar_image_data)):
log.warning("Found NaN values in colorbar rgb image")
colorbar_data = np.median(colorbar_image_data, axis=0) # One pixel wide
fig, axs = plt.subplots(1, 2, figsize=(12, 6))
plot_input(image_data, colorbar_image_data, axs)
plt.show()
nearest_indices = buffered_unmap(image_data, colorbar_data, updater=updater, norm_order=1)
if not nearest_indices.shape[:2] == image_data.shape[:2]:
log.error("Image shapes did not match up (this is likely fatal).")
mapped_colors = colorbar_data[nearest_indices]
residual_rgb = image_data - mapped_colors
residual_norm = np.linalg.norm(residual_rgb, ord=norm_order, axis=-1)
x, y, scaled_image, scaled_residual = auto_scale(nearest_indices, residual_norm,
colorbar_data,
xlim=xlim,
ylim=ylim,
clim=clim)
fig, ax = plt.subplots(figsize=(14, 6))
img = ax.pcolormesh(x, y, scaled_image, cmap='viridis')
ax.set_title('Reconstructed dataset')
plt.colorbar(img, ax=ax)
fig, ax = plt.subplots(figsize=(14, 6))
ax.set_title('Reconstruction residual')
img = ax.pcolormesh(x, y, scaled_residual, cmap='magma')
plt.colorbar(img, ax=ax)
#
# Hole filling
#
if error_threshold is not None:
fig, ax = plt.subplots(1, 1, figsize=(14, 6))
ax.set_title('Bad pixels')
ax.imshow(1.0 * (scaled_residual > error_threshold), cmap='magma')
unmapped_filled_image = auto_hole_fill(scaled_image, scaled_residual, error_threshold)
if np.any(np.isnan(unmapped_filled_image)):
print("Some NaN values could not be filled.")
else:
unmapped_filled_image = scaled_image
#
# Error analysis
#
fig, ax = plt.subplots()
plot_residual_histogram(ax, norm_order, residual_norm, residual_rgb)
plt.show()
#
# Comparison with original
#
fig, ax = plt.subplots(figsize=(14, 6))
ax.imshow(full_image)
ax.set_title("Original image area")
fig, ax = plt.subplots(figsize=(14, 6))
original_colormap = ListedColormap(colorbar_data / 255)
img = ax.pcolormesh(x, y, unmapped_filled_image, cmap=original_colormap)
fig.colorbar(img)
plt.title('Reconstructed dataset using original colorbar')
# Save pickle and csv file.
save_pickle(file, unmapped_filled_image, colorbar_data)
np.savetxt(basename(file) + "-slurped.csv",
unmapped_filled_image,
delimiter=", ",
fmt="%0.6e",
header=make_header(file, unmapped_filled_image.shape))
return locals()
def plot_residual_histogram(ax, norm_order, residual_norm, residual_rgb):
"""
Plot a histogram of the unmapping residuals.
:param ax: plot axis
:param norm_order: order of vector norm used to calculate color distance.
:param residual_norm: residual norm
:param residual_rgb: residual rgb values
:return:
"""
hatch = ['|||', '///', '---']
np.min(residual_norm)
bins = np.logspace(np.log10(np.min(residual_norm[np.where(residual_norm > 0)])),
np.log10(np.max(residual_norm)), 50)
ax.hist(residual_norm.ravel(),
bins=bins,
histtype='stepfilled',
color='gray',
label=str(norm_order) + " norm")
for _id, color in enumerate(('red', 'green', 'blue')):
ax.hist(residual_rgb[..., _id].ravel(),
bins=bins,
histtype='step',
color=color,
label=color,
hatch=hatch[_id],
edgecolor=color,
alpha=0.3)
ax.set_yscale('log')
ax.set_xscale('log')
ax.set_ylabel('Pixels')
ax.set_xlabel('RGB residual')
ax.set_title('Residuals histogram')
plt.legend()