forked from Pinafore/qb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_features.py
496 lines (427 loc) · 18.8 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
from __future__ import print_function
from collections import defaultdict, OrderedDict
import argparse
import sqlite3
import sys
import time
import pickle
from unidecode import unidecode
from numpy import var, mean
from util.qdb import QuestionDatabase
from extractors.ir import IrExtractor
from extractors.text import TextExtractor
from feature_extractor import FeatureExtractor
from extractors.lm import *
from extractors.deep import *
from extractors.classifier import *
from extractors.wikilinks import WikiLinks
from extractors.mentions import Mentions
from extractors.answer_present import AnswerPresent
from feature_config import kFEATURES
kMIN_APPEARANCES = 5
# Add features that actually guess
# TODO: Make this less cumbersome
kHAS_GUESSES = set()
if IrExtractor.has_guess():
kHAS_GUESSES.add("ir")
if LanguageModel.has_guess():
kHAS_GUESSES.add("lm")
if TextExtractor.has_guess():
kHAS_GUESSES.add("text")
if DeepExtractor.has_guess():
kHAS_GUESSES.add("deep")
if Classifier.has_guess():
kHAS_GUESSES.add("classifier")
if AnswerPresent.has_guess():
kHAS_GUESSES.add("answer_present")
kGRANULARITIES = ["sentence"]
kFOLDS = ["dev", "devtest", "test"]
kNEGINF = float("-inf")
def feature_lines(qq, guess_list, granularity, feature_generator):
guesses_needed = guess_list.all_guesses(qq)
# Guess we might have already
# It has the structure:
# guesses[(sent, token)][page][feat] = value
guesses_cached = defaultdict(dict)
if feature_generator.has_guess():
guesses_cached = \
guess_list.get_guesses(feature_generator.name(), qq)
print("cache", guesses_cached)
for ss, tt in sorted(guesses_needed):
if granularity == "sentence" and tt > 0:
continue
# Set metadata so the labeler can create ids and weights
guess_size = len(guesses_needed[(ss, tt)])
feature_generator.set_metadata(qq.page, qq.category,
qq.qnum, ss, tt,
guess_size, qq.fold)
# print("*", qq.qnum, ss, tt, str(guesses_cached[(ss, tt)])[:160])
for pp in sorted(guesses_needed[(ss, tt)]):
# Check to see if it's cached
if pp in guesses_cached[(ss, tt)]:
# print(guesses_cached[(ss, tt)][pp])
feat = feature_generator.\
vw_from_score(guesses_cached[(ss, tt)][pp])
else:
try:
feat = feature_generator.\
vw_from_title(pp, qq.get_text(ss, tt))
except ValueError:
print("Value error!")
feat = ""
# print(pp, feat)
yield ss, tt, pp, feat
def instantiate_feature(feature_name, questions, deep_data="data/deep"):
"""
@param feature_name: The feature to instantiate
@param questions: question database
"""
feature = None
print("Loading feature %s ..." % feature_name)
if feature_name == "ir":
feature = IrExtractor()
wiki_mean = 0.0
wiki_var = 1.0
qb_mean = 0.0
qb_var = 1.0
source_mean = 0.0
source_var = 1.0
feature.add_index("wiki_%i" % kMIN_APPEARANCES, "%s_%i" %
("data/ir/whoosh_wiki", kMIN_APPEARANCES),
wiki_mean, wiki_var)
feature.add_index("qb_%i" % kMIN_APPEARANCES, "%s_%i" %
("data/ir/whoosh_qb", kMIN_APPEARANCES),
qb_mean, qb_var)
feature.add_index("source_%i" % kMIN_APPEARANCES, "%s_%i" %
("data/ir/whoosh_source", kMIN_APPEARANCES),
source_mean, source_var)
elif feature_name == "text":
feature = TextExtractor()
elif feature_name == "lm":
feature = LanguageModel("data/language_model")
feature.add_corpus("qb")
feature.add_corpus("wiki")
feature.add_corpus("source")
elif feature_name == "deep":
print("from %s" % deep_data)
page_dict = {}
for page in questions.get_all_pages():
page_dict[page.lower().replace(' ', '_')] = page
feature = DeepExtractor("%s/classifier" % deep_data, \
"%s/params" % deep_data, "%s/vocab" % deep_data, \
"data/common/ners", page_dict, 200)
elif feature_name == "wikilinks":
feature = WikiLinks()
elif feature_name == "answer_present":
feature = AnswerPresent()
elif feature_name == "label":
feature = Labeler(questions)
elif feature_name == "classifier":
feature = Classifier('data/classifier/bigrams.pkl', questions)
elif feature_name == "mentions":
feature = Mentions(questions, kMIN_APPEARANCES)
else:
print("Don't know what to do with %s" % feature_name)
print("done")
return feature
def guesses_for_question(qq, features_that_guess, guess_list=None,
word_skip=-1, sentence_start=0):
guesses = {}
# Find out the guesses that we need for this question
for ff in features_that_guess:
if guess_list is None or guess_list.number_guesses(qq, ff) == 0:
guesses[ff] = defaultdict(dict)
# Gather all the guesses
for ss, ww, tt in qq.partials(word_skip):
# We have problems at the very start, so lets skip
if ss < sentence_start or ss == sentence_start and ww <= word_skip:
continue
for ff in guesses:
# print("Query from %s, %s" % (type(tt), tt))
results = features_that_guess[ff].text_guess(tt)
for gg in results:
guesses[ff][(ss, ww)][gg] = results[gg]
# add the correct answer if this is a training document and
if qq.fold == "train" and not qq.page in results:
guesses[ff][(ss, ww)][qq.page] = \
features_that_guess[ff].score_one_guess(qq.page, tt)
print(".", end="")
sys.stdout.flush()
# Get all of the guesses
all_guesses = set()
for ff in guesses:
for gg in guesses[ff][(ss, ww)]:
all_guesses.add(gg)
# Add missing guesses
for ff in features_that_guess:
missing = 0
for gg in [x for x in all_guesses if not x in
guesses[ff][(ss, ww)]]:
guesses[ff][(ss, ww)][gg] = \
features_that_guess[ff].score_one_guess(gg, tt)
missing += 1
return guesses
class Labeler(FeatureExtractor):
def __init__(self, question_db):
self._correct = None
self._num_guesses = 0
all_questions = question_db.questions_with_pages()
self._counts = {}
# Get the counts
for ii in all_questions:
self._counts[ii] = sum(1 for x in all_questions[ii] if
x.fold == "train")
# Standardize the scores
count_mean = mean(self._counts.values())
count_var = var(self._counts.values())
for ii in all_questions:
self._counts[ii] = float(self._counts[ii] - count_mean) / count_var
def vw_from_title(self, title, query):
assert self._correct, "Answer not set"
title = title.replace(":", "").replace("|", "")
# TODO: Incorporate token position here as well to improve
# position-based features
if title == self._correct:
return "1 '%s |guess %s |stats sent:%0.1f count:%f " % \
(self._id, unidecode(title).replace(" ", "_"), self._sent,
self._counts.get(title, -2))
else:
return "-1 %i '%s |guess %s |stats sent:%0.1f count:%f " % \
(self._num_guesses, self._id,
unidecode(title).replace(" ", "_"), self._sent,
self._counts.get(title, -2))
def name(self):
return "label"
class GuessList:
def __init__(self, db_path):
# Create the database structure if it doesn't exist
self.db_structure(db_path)
self._conn = sqlite3.connect(db_path)
self._stats = {}
def db_structure(self, db_path):
conn = sqlite3.connect(db_path)
c = conn.cursor()
sql = 'CREATE TABLE IF NOT EXISTS guesses (' + \
'fold TEXT, question INTEGER, sentence INTEGER, token INTEGER, page TEXT,' + \
' guesser TEXT, feature TEXT, score NUMERIC, PRIMARY KEY ' + \
'(fold, question, sentence, token, page, guesser, feature));'
c.execute(sql)
c.execute("CREATE INDEX IF NOT EXISTS guess_index ON " +
"guesses (question, sentence, token, page);")
conn.commit()
def number_guesses(self, question, guesser):
query = 'SELECT COUNT(*) FROM guesses WHERE question=? AND guesser=?;'
c = self._conn.cursor()
c.execute(query, (question.qnum, guesser,))
for count, in c:
return count
return 0
def all_guesses(self, question):
query = 'SELECT sentence, token, page ' + \
'FROM guesses WHERE question=?;'
c = self._conn.cursor()
c.execute(query, (question.qnum,))
guesses = defaultdict(set)
for ss, tt, pp in c:
guesses[(ss, tt)].add(pp)
if question.page and question.fold == "train":
for (ss, tt) in guesses:
guesses[(ss, tt)].add(question.page)
return guesses
def check_recall(self, question_list, guesser_list, correct_answer):
totals = defaultdict(int)
correct = defaultdict(int)
c = self._conn.cursor()
query = 'SELECT count(*) as cnt FROM guesses WHERE guesser=? ' + \
'AND page=? AND question=?;'
for gg in guesser_list:
for qq in question_list:
if qq.fold == "train":
continue
c.execute(query, (gg, correct_answer, qq.qnum,))
data = c.fetchone()[0]
if data != 0:
correct[gg] += 1
totals[gg] += 1
for gg in guesser_list:
if totals[gg] > 0:
yield gg, float(correct[gg]) / float(totals[gg])
def guesser_statistics(self, guesser, feature, limit=5000):
"""
Return the mean and variance of a guesser's scores.
"""
if limit > 0:
query = 'SELECT score FROM guesses WHERE guesser=? AND feature=? AND score>0 LIMIT %i;' % limit
else:
query = 'SELECT score FROM guesses WHERE guesser=? AND feature=? AND score>0;'
c = self._conn.cursor()
c.execute(query, (guesser, feature,))
# TODO(jbg): Is there a way of computing this without casting to list?
values = list(x[0] for x in c if x[0] > kNEGINF)
return mean(values), var(values)
def get_guesses(self, guesser, question):
query = 'SELECT sentence, token, page, feature, score ' + \
'FROM guesses WHERE question=? AND guesser=?;'
c = self._conn.cursor()
# print(query, question.qnum, guesser,)
c.execute(query, (question.qnum, guesser,))
guesses = defaultdict(dict)
for ss, tt, pp, ff, vv in c:
if not pp in guesses[(ss, tt)]:
guesses[(ss, tt)][pp] = {}
guesses[(ss, tt)][pp][ff] = vv
return guesses
def add_guesses(self, guesser, question, fold, guesses):
# Remove the old guesses
query = 'DELETE FROM guesses WHERE question=? AND guesser=?;'
c = self._conn.cursor()
c.execute(query, (question, guesser,))
# Add in the new guesses
query = 'INSERT INTO guesses' + \
'(fold, question, sentence, token, page, guesser, score, feature) ' + \
'VALUES(?, ?, ?, ?, ?, ?, ?, ?);'
for ss, tt in guesses:
for gg in guesses[(ss, tt)]:
for feat, val in guesses[(ss, tt)][gg].items():
c.execute(query,
(fold, question, ss, tt, gg,
guesser, val, feat))
self._conn.commit()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='')
parser.add_argument('--guesses', default=False, action='store_true',
help="Write the guesses")
parser.add_argument('--label', default=False, action='store_true',
help="Write the labels")
parser.add_argument('--gap', type=int, default=100,
help='Gap (in number of tokens) between each guess')
parser.add_argument('--guess_db', type=str, default='data/guesses.db',
help='Where we write/read the guesses')
parser.add_argument('--question_db', type=str, default='data/questions.db')
parser.add_argument('--feature', type=str, default='',
help="Which feature we write out")
parser.add_argument("--granularity", type=str,
default="sentence")
parser.add_argument("--limit", type=int, default=-1,
help="How many answer to write to feature files")
parser.add_argument("--ans_limit", type=int, default=5,
help="minimum answer limit")
flags = parser.parse_args()
print("Loading database from %s" % flags.question_db)
questions = QuestionDatabase(flags.question_db)
guess_list = GuessList(flags.guess_db)
if flags.guesses:
# kFEATURES["ir"] = IrExtractor()
# for cc in kIR_CUTOFFS:
# kFEATURES["ir"].add_index("wiki_%i" % cc, "%s_%i" %
# (flags.whoosh_wiki, cc))
# kFEATURES["ir"].add_index("qb_%i" % cc, "%s_%i" %
# (flags.whoosh_qb, cc))
# if kIR_CATEGORIES:
# categories = questions.column_options("category")
# print("Adding categories %s" % str(categories))
# for cc in categories:
# kFEATURES["ir"].add_index("wiki_%s" % cc, "%s_%s" %
# (flags.whoosh_wiki, cc))
# kFEATURES["ir"].add_index("qb_%s" % cc, "%s_%s" %
# (flags.whoosh_qb, cc))
kFEATURES["deep"] = instantiate_feature("deep", questions)
# features_that_guess = set(kFEATURES[x] for x in kHAS_GUESSES)
features_that_guess = {"deep": kFEATURES["deep"]}
print("Guesses %s" % "\t".join(x for x in features_that_guess))
all_questions = questions.questions_with_pages()
page_num = 0
total_pages = sum(1 for x in all_questions if
len(all_questions[x]) >= flags.ans_limit)
for page in all_questions:
if len(all_questions[page]) < flags.ans_limit:
continue
else:
print("%s\t%i" % (page, len(all_questions[page])))
question_num = 0
page_num += 1
for qq in all_questions[page]:
# We don't need guesses for train questions
if qq.fold == "train":
continue
question_num += 1
guesses = guesses_for_question(qq, features_that_guess,
guess_list)
# Save the guesses
for guesser in guesses:
guess_list.add_guesses(guesser, qq.qnum, qq.fold,
guesses[guesser])
print("%i/%i" % (question_num, len(all_questions[page])))
print("%i(%i) of\t%i\t%s\t" %
(page_num, len(all_questions[page]),
total_pages, page), end="")
if 0 < flags.limit < page_num:
break
if flags.feature or flags.label:
o = {}
meta = {}
count = defaultdict(int)
if flags.feature:
assert flags.feature in kFEATURES, "%s not a feature" % flags.feature
kFEATURES[flags.feature] = instantiate_feature(flags.feature,
questions)
feature_generator = kFEATURES[flags.feature]
else:
feature_generator = instantiate_feature("label", questions)
for ii in kFOLDS:
name = feature_generator.name()
filename = ("features/%s/%s.%s.feat" %
(ii, flags.granularity, name))
print("Opening %s for output" % filename)
o[ii] = open(filename, 'w')
if flags.label:
filename = ("features/%s/%s.meta" %
(ii, flags.granularity))
else:
filename = ("features/%s/%s.meta" %
(ii, flags.feature))
meta[ii] = open(filename, 'w')
all_questions = questions.questions_with_pages()
totals = defaultdict(int)
for page in all_questions:
for qq in all_questions[page]:
totals[qq.fold] += 1
print("TOTALS")
print(totals)
page_count = 0
feat_lines = 0
start = time.time()
max_relevant = sum(1 for x in all_questions
if len(all_questions[x]) >= flags.ans_limit)
for page in all_questions:
if len(all_questions[page]) >= flags.ans_limit:
page_count += 1
if page_count % 50 == 0:
print(count)
print("Page %i of %i (%s), %f feature lines per sec" %
(page_count, max_relevant,
feature_generator.name(),
float(feat_lines) / (time.time() - start)))
print(unidecode(page))
feat_lines = 0
start = time.time()
for qq in all_questions[page]:
if qq.fold != 'train':
count[qq.fold] += 1
fold_here = qq.fold
# All the guesses we need to make (on non-train questions)
for ss, tt, pp, feat in feature_lines(qq, guess_list,
flags.granularity,
feature_generator):
feat_lines += 1
if meta:
meta[qq.fold].write("%i %i %i %s\n" %
(qq.qnum, ss, tt,
unidecode(pp)))
assert feat is not None
o[qq.fold].write("%s\n" % feat)
assert fold_here == qq.fold, "%s %s" % (fold_here, qq.fold)
# print(ss, tt, pp, feat)
o[qq.fold].flush()
if 0 < flags.limit < page_count:
break