-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
237 lines (217 loc) · 9.58 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import argparse
import random
from collections import defaultdict
import torch
import os
import time
import numpy as np
import logging as log_config
from utils.losses import get_loss_func
from data_loader import get_train_datalist, get_test_datalist
from models.model import Baseline_CNN, BCResNet_Mod
from models.frontend import Audio_Frontend
from utils.get_methods import get_methods
def save_model(model, optimizer, step, acc, name):
save_path = os.path.join(ckpt_dir, name + '.pt')
torch.save({
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'step': step,
'acc': acc
}, save_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Example of parser. ')
# Data root.
parser.add_argument("--data_root", type=str, default='/home/xiaoyang/Dev/asc-continual-learning/data/collection')
parser.add_argument('--exp_name', type=str, default='disjoint')
parser.add_argument('--workspace', type=str, default='workspace')
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--epoch', type=int, default=30)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--model_name', type=str, default='BC-ResNet') # 'baseline' | 'BC-ResNet'
parser.add_argument('--dataset', type=str, default='TAU-ASC') # 'TAU-ASC' | 'ESC-50' |
parser.add_argument("--mode", type=str, default="replay", help="CIL methods [finetune, replay]", )
parser.add_argument(
"--mem_manage",
type=str,
default='prototype',
help="memory management [random, uncertainty, reservoir, prototype]",
)
parser.add_argument("--n_tasks", type=int, default=5, help="The number of tasks")
parser.add_argument(
"--n_cls_a_task", type=int, default=2, help="The number of class of each task"
)
parser.add_argument(
"--n_init_cls",
type=int,
default=2,
help="The number of classes of initial task",
)
parser.add_argument("--rnd_seed", type=int, default=3, help="Random seed number.")
parser.add_argument(
"--memory_size", type=int, default=500, help="Episodic memory size"
)
# Uncertain
parser.add_argument(
"--uncert_metric",
type=str,
default="noisytune",
choices=["shift", "noise", "mask", "combination", "noisytune"],
help="A type of uncertainty metric",
)
parser.add_argument("--metric_k", type=int, default=6, choices=[2, 4, 6],
help="The number of the uncertainty metric functions")
parser.add_argument("--noise_lambda", type=float, default=0.2,
help="The number of the uncertainty metric functions")
# Debug
parser.add_argument("--debug", action="store_true", help="Turn on Debug mode")
args = parser.parse_args()
if args.mode == "finetune":
save_path = f"{args.dataset}_{args.mode}_cls{args.n_cls_a_task}" \
f"_epoch{args.epoch}_lr{args.lr}_rnd{args.rnd_seed}"
elif args.mem_manage == "uncertainty":
save_path = f"{args.dataset}_{args.mode}_cls{args.n_cls_a_task}_{args.mem_manage}_{args.uncert_metric}" \
f"_{args.metric_k}_{args.noise_lambda}_epoch{args.epoch}" \
f"_lr{args.lr}_msz{args.memory_size}_rnd{args.rnd_seed}"
else:
save_path = f"{args.dataset}_{args.mode}_cls{args.n_cls_a_task}_{args.mem_manage}" \
f"_epoch{args.epoch}_lr{args.lr}_msz{args.memory_size}_rnd{args.rnd_seed}"
# Training parameters
exp_name = args.exp_name
batch_size = args.batch_size
epoch = args.epoch
learning_rate = args.lr
model_name = args.model_name
dataset = args.dataset
# Log file initalization
ckpt_dir = os.path.join('workspace', dataset, exp_name, 'save_models')
os.makedirs(ckpt_dir, exist_ok=True)
ckpt_name = os.path.join(ckpt_dir, 'last.pt')
ckpt_path = ckpt_name if os.path.exists(ckpt_name) else None
log_dir = os.path.join('workspace', dataset, exp_name, 'logs')
os.makedirs(log_dir, exist_ok=True)
root_logger = log_config.getLogger()
for h in root_logger.handlers:
root_logger.removeHandler(h)
log_config.basicConfig(
level=log_config.INFO,
format=' %(asctime)s - %(levelname)s - %(message)s',
handlers=[
log_config.FileHandler(os.path.join(log_dir,
f'{save_path}.log')),
log_config.StreamHandler()
]
)
logger = log_config.getLogger()
# Device Setup
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
if 'cuda' in str(device):
logger.info(f'Exp name: {exp_name} | Using GPU')
device = 'cuda'
else:
logger.info(f'Exp name: {exp_name} | Using CPU. Set --cuda flag to use GPU')
device = 'cpu'
logger.info(f'{args.__dict__}')
# Default audio frontend Hyperparameters setup for TAU-ASC
frontend_params = {
'sample_rate': 48000,
'window_size': 1024,
'hop_size': 320,
'mel_bins': 64,
'fmin': 50,
'fmax': 14000}
num_class = 10
if dataset == 'ESC-50':
frontend_params['sample_rate'] = 44100
num_class = 50
frontend = Audio_Frontend(**frontend_params)
# Fix the random seeds
# https://hoya012.github.io/blog/reproducible_pytorch/
torch.manual_seed(args.rnd_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(args.rnd_seed)
random.seed(args.rnd_seed)
# [1] Select a CIL method
logger.info(f"[1] Select a CIL method ({args.mode})")
if args.mem_manage == 'uncertainty':
logger.info(f"Select uncertainty measure approach ({args.uncert_metric})")
loss_func = get_loss_func('clip_ce')
if model_name == 'baseline':
model = Baseline_CNN(num_class=num_class, frontend=frontend)
elif model_name == 'BC-ResNet':
model = BCResNet_Mod(num_class=num_class, frontend=frontend)
else:
raise Exception
method = get_methods(
args, loss_func, device, num_class, model
)
# Incrementally training
logger.info(f"[2] Incrementally training {args.n_tasks} tasks")
task_records = defaultdict(list)
start_time = time.time()
# start to train each tasks
logger.info(f'Audio frontend param:\n{frontend_params}\n')
logger.info(f'Model:\n{model}\n')
logger.info(f"Exp: {exp_name} | batch_size: {batch_size} | learning_rate: {learning_rate} | dataset: {dataset}")
for cur_iter in range(args.n_tasks):
print("\n" + "#" * 50)
print(f"# Task {cur_iter} iteration")
print("#" * 50 + "\n")
logger.info("[2-1] Prepare a datalist for the current task")
task_acc = 0.0
if args.dataset == "ESC-50":
cur_train_datalist = get_train_datalist(args, cur_iter)
cur_test_datalist = get_test_datalist(args, args.exp_name, cur_iter)
fold_acc = 0.0
for test_fold in range(1, 6):
logger.info(f"Set the test fold number {test_fold} of the current task")
method.set_current_dataset(cur_train_datalist[test_fold - 1], cur_test_datalist[test_fold - 1])
# Increment known class for current task iteration.
method.before_task(datalist=cur_train_datalist[test_fold - 1], init_opt=True)
logger.info(f"[2-3] Start to train")
fold_acc += method.train(
n_epoch=args.epoch,
batch_size=args.batch_size,
n_worker=8,
)
logger.info("[2-4] Update the information for the current task")
method.after_task(cur_iter)
task_acc = fold_acc / 5
else:
# get datalist
cur_train_datalist = get_train_datalist(args, cur_iter)
cur_test_datalist = get_test_datalist(args, args.exp_name, cur_iter)
logger.info("[2-2] Set environment for the current task")
method.set_current_dataset(cur_train_datalist, cur_test_datalist)
# Increment known class for current task iteration.
method.before_task(datalist=cur_train_datalist, init_opt=True)
logger.info(f"[2-3] Start to train")
task_acc = method.train(
n_epoch=args.epoch,
batch_size=args.batch_size,
n_worker=8,
)
before_update = time.time()
logger.info("[2-4] Update the information for the current task")
method.after_task(cur_iter)
update_time = time.time() - before_update
if cur_iter != 0:
task_records["update_time"].append(update_time)
task_records["task_acc"].append(task_acc)
if cur_iter > 0:
task_records["bwt_list"].append(np.mean(
[task_records["task_acc"][i + 1] - task_records["task_acc"][i] for i in
range(len(task_records["task_acc"]) - 1)]))
logger.info("[2-5] Report task result")
np.save(f"{log_dir}/{save_path}.npy", task_records)
# Total time (T)
duration = time.time() - start_time
# Accuracy(A)
A_avg = np.mean(task_records["task_acc"])
A_last = task_records["task_acc"][args.n_tasks - 1]
logger.info(f"======== Summary =======")
logger.info(f"Total time {duration}, Avg: {duration / args.n_tasks}s")
logger.info(f'BWT: {np.mean(task_records["bwt_list"])}, std: {np.std(task_records["bwt_list"])}')
logger.info(f"A_last {A_last} | A_avg {A_avg}")
logger.info(f'Update time {task_records["update_time"]}')