-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3dcnn-my-model.py
126 lines (101 loc) · 5.08 KB
/
3dcnn-my-model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import argparse
import os
import numpy as np
from keras.layers import (Activation, Conv3D, Dense, Dropout, Flatten,
MaxPooling3D)
from keras.losses import categorical_crossentropy
from keras.models import Sequential
from keras.optimizers import Adam
from keras.utils import np_utils
from keras.utils.vis_utils import plot_model
from keras.callbacks import TensorBoard
from keras.callbacks import Callback
from keras.callbacks import ModelCheckpoint
from keras import backend as K
from keras.utils import multi_gpu_model
from data_generator_ucf import DataGenerator
from time import time
class decay_lr(Callback):
'''
n_epoch = no. of epochs after which the learning rate should be decayed.
decay = decay value
'''
def __init__(self, n_epoch, decay):
super(decay_lr, self).__init__()
self.n_epoch=n_epoch
self.decay=decay
def on_epoch_begin(self, epoch, logs={}):
if epoch != 0 and epoch %self.n_epoch == 0:
K.set_value(self.model.optimizer.lr, K.get_value(self.model.optimizer.lr)*self.decay)
def save_history(history, result_dir):
loss = history.history['loss']
acc = history.history['acc']
nb_epoch = len(acc)
with open(os.path.join(result_dir, 'result.txt'), 'w') as fp:
fp.write('epoch\tloss\tacc\n')
for i in range(nb_epoch):
fp.write('{}\t{}\t{}\n'.format(
i, loss[i], acc[i]))
def main():
parser = argparse.ArgumentParser(
description='simple 3D convolution for action recognition')
parser.add_argument('--batch', type=int, default=24)
parser.add_argument('--epoch', type=int, default=24)
parser.add_argument('--videos', type=str, default='dataset/train',
help='directory where videos are stored')
parser.add_argument('--nclass', type=int, default=101)
parser.add_argument('--output', type=str, default='output')
parser.add_argument('--color', type=bool, default=True)
parser.add_argument('--skip', type=bool, default=False)
parser.add_argument('--depth', type=int, default=16)
args = parser.parse_args()
# check if you should resize the image
img_rows, img_cols, frames = 160, 120, args.depth
channel = 3 if args.color else 1
model = Sequential()
model.add(Conv3D(64, kernel_size=(3, 3, 3), input_shape=(img_cols, img_rows, frames, channel),
padding='same', activation='relu'))
model.add(MaxPooling3D(pool_size=(2, 2, 1), padding='same'))
model.add(Conv3D(128, kernel_size=(3, 3, 3), padding='same', activation='relu'))
model.add(MaxPooling3D(pool_size=(2, 2, 2), padding='same'))
model.add(Conv3D(256, kernel_size=(3, 3, 3), padding='same', activation='relu'))
#model.add(Conv3D(256, kernel_size=(3, 3, 3), padding='same', activation='relu'))
model.add(MaxPooling3D(pool_size=(2, 2, 2), padding='same'))
model.add(Conv3D(256, kernel_size=(3, 3, 3), padding='same', activation='relu'))
#model.add(Conv3D(512, kernel_size=(3, 3, 3), padding='same', activation='relu'))
model.add(MaxPooling3D(pool_size=(2, 2, 2), padding='same'))
model.add(Conv3D(256, kernel_size=(3, 3, 3), padding='same', activation='relu'))
#model.add(Conv3D(512, kernel_size=(3, 3, 3), padding='same', activation='relu'))
model.add(MaxPooling3D(pool_size=(2, 2, 2), padding='same'))
model.add(Flatten())
model.add(Dense(4096, activation='sigmoid'))
model.add(Dropout(0.2))
model.add(Dense(512, activation='sigmoid'))
model.add(Dropout(0.2))
model.add(Dense(args.nclass, activation='softmax'))
#model = multi_gpu_model(model, gpus=4)
model.compile(loss=categorical_crossentropy,
optimizer=Adam(lr=0.00003), metrics=['accuracy'])
model.summary()
#model.load_weights('sports1M_weights.h5')
filepath="d_3dcnnmodel_ucf_lr1_decay-{epoch:02d}-{val_acc:.2f}.hd5"
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
tensorboard = TensorBoard(log_dir="logs/{}".format(time()), write_graph=True )
decaySchedule=decay_lr(4, 0.10)
callbacks_list = [tensorboard, decaySchedule, checkpoint]
train_generator = DataGenerator(args.batch, 'UCF101/train', frames, True, False)
test_generator = DataGenerator(args.batch, 'UCF101/test', frames, False, False)
validation_generator = DataGenerator(args.batch, 'UCF101/validation', frames, False, True)
history = model.fit_generator(generator=train_generator,
epochs=args.epoch, shuffle=False, validation_data=validation_generator, callbacks=callbacks_list)
#use_multiprocessing=True, workers=6)
loss, acc = model.evaluate_generator(test_generator)
model_json = model.to_json()
with open('output/action_3dcnnmodel-gpu_ucf_lr1_decay.json', 'w') as json_file:
json_file.write(model_json)
model.save_weights('output/action_3dcnnmodel-gpu_ucf_lr1_decay.hd5')
print('Test loss:', loss)
print('Test accuracy:', acc)
save_history(history, args.output)
if __name__ == '__main__':
main()