Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Sweep (sandbox): src/main.py #95

Open
kevinlu1248 opened this issue Oct 24, 2023 · 1 comment
Open

Sweep (sandbox): src/main.py #95

kevinlu1248 opened this issue Oct 24, 2023 · 1 comment
Labels

Comments

@kevinlu1248
Copy link
Member

Details

No response

@sweep-nightly
Copy link

sweep-nightly bot commented Oct 24, 2023

Sweeping

100%

💎 Sweep Pro: I'm using GPT-4. You have unlimited GPT-4 tickets. (tracking ID: a3f34edc0d)


Docker Version Updated


Actions (click)

  • ↻ Restart Sweep

📖 Reading File

Running sandbox for src/main.py. Current Code:

evals/src/main.py

Lines 1 to 48 in 7284908

from PIL import Image
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import numpy as np
# Step 1: Load MNIST Data and Preprocess
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
trainset = datasets.MNIST('.', download=True, train=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=64, shuffle=True)
# Step 2: Define the PyTorch Model
class Net(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(28 * 28, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 10)
def forward(self, x):
x = x.view(-1, 28 * 28)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return nn.functional.log_softmax(x, dim=1)
# Step 3: Train the Model
model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01)
criterion = nn.NLLLoss()
# Training loop
epochs = 3
for epoch in range(epochs):
for images, labels in trainloader:
optimizer.zero_grad()
output = model(images)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
torch.save(model.state_dict(), "mnist_model.pth")


🛠️ Executing Sandbox


Sandbox logs
pip install -r requirements.txt 1/4 ✓
Looking in links: https://download.pytorch.org/whl/torch_stable.html
DEPRECATION: The HTML index page being used (https://download.pytorch.org/whl/torch_stable.html) is not a proper HTML 5 document. This is in violation of PEP 503 which requires these pages to be well-formed HTML 5 documents. Please reach out to the owners of this index page, and ask them to update this index page to a valid HTML 5 document. pip 22.2 will enforce this behaviour change. Discussion can be found at https://github.com/pypa/pip/issues/10825
Collecting annotated-types==0.6.0
  Downloading annotated_types-0.6.0-py3-none-any.whl (12 kB)
Collecting anyio==3.7.1
  Downloading anyio-3.7.1-py3-none-any.whl (80 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 80.9/80.9 KB 6.2 MB/s eta 0:00:00
Collecting astroid==3.0.1
  Downloading astroid-3.0.1-py3-none-any.whl (275 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 275.2/275.2 KB 47.3 MB/s eta 0:00:00
Collecting certifi==2022.12.7
  Downloading certifi-2022.12.7-py3-none-any.whl (155 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 155.3/155.3 KB 46.5 MB/s eta 0:00:00
Collecting charset-normalizer==2.1.1
  Downloading charset_normalizer-2.1.1-py3-none-any.whl (39 kB)
Requirement already satisfied: click==8.1.7 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 6)) (8.1.7)
Collecting dill==0.3.7
  Downloading dill-0.3.7-py3-none-any.whl (115 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 115.3/115.3 KB 52.2 MB/s eta 0:00:00
Collecting exceptiongroup==1.1.3
  Downloading exceptiongroup-1.1.3-py3-none-any.whl (14 kB)
Collecting fastapi==0.104.0
  Downloading fastapi-0.104.0-py3-none-any.whl (92 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 92.9/92.9 KB 44.3 MB/s eta 0:00:00
Collecting filelock==3.9.0
  Downloading filelock-3.9.0-py3-none-any.whl (9.7 kB)
Collecting fsspec==2023.4.0
  Downloading fsspec-2023.4.0-py3-none-any.whl (153 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 154.0/154.0 KB 34.1 MB/s eta 0:00:00
Collecting h11==0.14.0
  Downloading h11-0.14.0-py3-none-any.whl (58 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58.3/58.3 KB 24.9 MB/s eta 0:00:00
Requirement already satisfied: idna==3.4 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 13)) (3.4)
Collecting iniconfig==2.0.0
  Downloading iniconfig-2.0.0-py3-none-any.whl (5.9 kB)
Requirement already satisfied: isort==5.12.0 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 15)) (5.12.0)
Collecting Jinja2==3.1.2
  Downloading Jinja2-3.1.2-py3-none-any.whl (133 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 133.1/133.1 KB 60.0 MB/s eta 0:00:00
Collecting MarkupSafe==2.1.2
  Downloading MarkupSafe-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25 kB)
Collecting mccabe==0.7.0
  Downloading mccabe-0.7.0-py2.py3-none-any.whl (7.3 kB)
Collecting mpmath==1.3.0
  Downloading mpmath-1.3.0-py3-none-any.whl (536 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 536.2/536.2 KB 54.6 MB/s eta 0:00:00
Collecting networkx==3.0
  Downloading networkx-3.0-py3-none-any.whl (2.0 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.0/2.0 MB 64.0 MB/s eta 0:00:00
Collecting numpy==1.24.1
  Downloading numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 17.3/17.3 MB 62.3 MB/s eta 0:00:00
Requirement already satisfied: packaging==23.2 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 22)) (23.2)
Collecting Pillow==9.3.0
  Downloading Pillow-9.3.0-cp310-cp310-manylinux_2_28_x86_64.whl (3.3 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.3/3.3 MB 74.9 MB/s eta 0:00:00
Requirement already satisfied: platformdirs==3.11.0 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 24)) (3.11.0)
Collecting pluggy==1.3.0
  Downloading pluggy-1.3.0-py3-none-any.whl (18 kB)
Collecting pydantic==2.4.2
  Downloading pydantic-2.4.2-py3-none-any.whl (395 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 395.8/395.8 KB 23.1 MB/s eta 0:00:00
Collecting pydantic_core==2.10.1
  Downloading pydantic_core-2.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.0/2.0 MB 55.4 MB/s eta 0:00:00
Collecting pylint==3.0.2
  Downloading pylint-3.0.2-py3-none-any.whl (510 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 510.6/510.6 KB 64.6 MB/s eta 0:00:00
Collecting pytest==7.4.2
  Downloading pytest-7.4.2-py3-none-any.whl (324 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 324.5/324.5 KB 58.8 MB/s eta 0:00:00
Collecting requests==2.28.1
  Downloading requests-2.28.1-py3-none-any.whl (62 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 62.8/62.8 KB 26.0 MB/s eta 0:00:00
Collecting sniffio==1.3.0
  Downloading sniffio-1.3.0-py3-none-any.whl (10 kB)
Collecting starlette==0.27.0
  Downloading starlette-0.27.0-py3-none-any.whl (66 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 67.0/67.0 KB 32.3 MB/s eta 0:00:00
Collecting sympy==1.12
  Downloading sympy-1.12-py3-none-any.whl (5.7 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.7/5.7 MB 82.1 MB/s eta 0:00:00
Requirement already satisfied: tomli==2.0.1 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 34)) (2.0.1)
Collecting tomlkit==0.12.1
  Downloading tomlkit-0.12.1-py3-none-any.whl (37 kB)
Collecting torch==2.1.0+cpu
  Downloading https://download.pytorch.org/whl/cpu/torch-2.1.0%2Bcpu-cp310-cp310-linux_x86_64.whl (184.9 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 184.9/184.9 MB 25.2 MB/s eta 0:00:00
Collecting torchaudio==2.1.0+cpu
  Downloading https://download.pytorch.org/whl/cpu/torchaudio-2.1.0%2Bcpu-cp310-cp310-linux_x86_64.whl (1.6 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.6/1.6 MB 66.8 MB/s eta 0:00:00
Collecting torchvision==0.16.0+cpu
  Downloading https://download.pytorch.org/whl/cpu/torchvision-0.16.0%2Bcpu-cp310-cp310-linux_x86_64.whl (1.6 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.6/1.6 MB 62.2 MB/s eta 0:00:00
Requirement already satisfied: typing_extensions==4.8.0 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 40)) (4.8.0)
Collecting urllib3==1.26.13
  Downloading urllib3-1.26.13-py2.py3-none-any.whl (140 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 140.6/140.6 KB 64.0 MB/s eta 0:00:00
Collecting uvicorn==0.23.2
  Downloading uvicorn-0.23.2-py3-none-any.whl (59 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 59.5/59.5 KB 26.1 MB/s eta 0:00:00
Installing collected packages: mpmath, urllib3, tomlkit, sympy, sniffio, pydantic_core, pluggy, Pillow, numpy, networkx, mccabe, MarkupSafe, iniconfig, h11, fsspec, filelock, exceptiongroup, dill, charset-normalizer, certifi, astroid, annotated-types, uvicorn, requests, pytest, pylint, pydantic, Jinja2, anyio, torch, starlette, torchvision, torchaudio, fastapi
  Attempting uninstall: urllib3
    Found existing installation: urllib3 2.0.7
    Uninstalling urllib3-2.0.7:
      Successfully uninstalled urllib3-2.0.7
  Attempting uninstall: tomlkit
    Found existing installation: tomlkit 0.12.2
    Uninstalling tomlkit-0.12.2:
      Successfully uninstalled tomlkit-0.12.2
  Attempting uninstall: filelock
    Found existing installation: filelock 3.13.1
    Uninstalling filelock-3.13.1:
      Successfully uninstalled filelock-3.13.1
  Attempting uninstall: charset-normalizer
    Found existing installation: charset-normalizer 3.3.2
    Uninstalling charset-normalizer-3.3.2:
      Successfully uninstalled charset-normalizer-3.3.2
  Attempting uninstall: certifi
    Found existing installation: certifi 2023.7.22
    Uninstalling certifi-2023.7.22:
      Successfully uninstalled certifi-2023.7.22
  Attempting uninstall: requests
    Found existing installation: requests 2.31.0
    Uninstalling requests-2.31.0:
      Successfully uninstalled requests-2.31.0
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
virtualenv 20.24.6 requires filelock<4,>=3.12.2, but you have filelock 3.9.0 which is incompatible.
Successfully installed Jinja2-3.1.2 MarkupSafe-2.1.2 Pillow-9.3.0 annotated-types-0.6.0 anyio-3.7.1 astroid-3.0.1 certifi-2022.12.7 charset-normalizer-2.1.1 dill-0.3.7 exceptiongroup-1.1.3 fastapi-0.104.0 filelock-3.9.0 fsspec-2023.4.0 h11-0.14.0 iniconfig-2.0.0 mccabe-0.7.0 mpmath-1.3.0 networkx-3.0 numpy-1.24.1 pluggy-1.3.0 pydantic-2.4.2 pydantic_core-2.10.1 pylint-3.0.2 pytest-7.4.2 requests-2.28.1 sniffio-1.3.0 starlette-0.27.0 sympy-1.12 tomlkit-0.12.1 torch-2.1.0+cpu torchaudio-2.1.0+cpu torchvision-0.16.0+cpu urllib3-1.26.13 uvicorn-0.23.2
WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv
trunk init 2/4 ✓
⡿ Downloading Trunk 1.17.2...
⡿ Downloading Trunk 1.17.2...
⢿ Downloading Trunk 1.17.2...
⣻ Downloading Trunk 1.17.2...
⣽ Downloading Trunk 1.17.2...
⣾ Downloading Trunk 1.17.2...
⣷ Downloading Trunk 1.17.2...
⣯ Downloading Trunk 1.17.2...
⣟ Downloading Trunk 1.17.2...
⡿ Downloading Trunk 1.17.2...
⢿ Downloading Trunk 1.17.2...
⣻ Downloading Trunk 1.17.2...
⣽ Downloading Trunk 1.17.2...
⣾ Downloading Trunk 1.17.2...
⣷ Downloading Trunk 1.17.2...
⣯ Downloading Trunk 1.17.2...
⣟ Downloading Trunk 1.17.2...
⡿ Downloading Trunk 1.17.2...
⢿ Downloading Trunk 1.17.2...
⣻ Downloading Trunk 1.17.2...
⣽ Downloading Trunk 1.17.2...
⣾ Downloading Trunk 1.17.2...
⣷ Downloading Trunk 1.17.2...
⣯ Downloading Trunk 1.17.2...
⣟ Downloading Trunk 1.17.2...
⡿ Downloading Trunk 1.17.2...
⢿ Downloading Trunk 1.17.2...
⣻ Downloading Trunk 1.17.2...
⣽ Downloading Trunk 1.17.2...
⣾ Downloading Trunk 1.17.2...
⣷ Downloading Trunk 1.17.2...
⣯ Downloading Trunk 1.17.2...
✔ Downloading Trunk 1.17.2... done
⡿ Verifying Trunk sha256...
✔ Verifying Trunk sha256... done
⡿ Unpacking Trunk...
✔ Unpacking Trunk... done


✔ 13 linters were enabled (.trunk/trunk.yaml)
  actionlint 1.6.26 (2 github-workflow files)
  bandit 1.7.5 (2 python files)
  black 23.9.1 (2 python files)
  checkov 3.1.9 (5 yaml files)
  git-diff-check (12 files)
  isort 5.12.0 (2 python files) (created .isort.cfg)
  markdownlint 0.37.0 (1 markdown file) (created .markdownlint.yaml)
  osv-scanner 1.4.3 (1 lockfile file)
  prettier 3.1.0 (1 markdown, 5 yaml files)
  ruff 0.1.6 (2 python files) (created ruff.toml)
  trivy 0.47.0 (5 yaml files)
  trufflehog 3.63.2-rc0 (12 files)
  yamllint 1.33.0 (5 yaml files) (created .yamllint.yaml)
Next Steps
 1. Read documentation
    Our documentation can be found at https://docs.trunk.io
 2. Get help and give feedback
    Join the Trunk community at https://slack.trunk.io
trunk fmt src/main.py || exit 0 3/4 ✓
 ✔ Formatted src/main.py
Re-checking autofixed files...

 ✔ Formatted src/main.py
Re-checking autofixed files...


Checked 1 file
✔ No issues
trunk check --fix --filter=-ruff --print-failures src/main.py 4/4 ✓
Checked 1 file
✔ No issues

Updated Code:

import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from PIL import Image
from torch.utils.data import DataLoader
from torchvision import datasets, transforms

# Step 1: Load MNIST Data and Preprocess
transform = transforms.Compose(
    [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
)

trainset = datasets.MNIST(".", download=True, train=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=64, shuffle=True)


# Step 2: Define the PyTorch Model
class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(28 * 28, 128)
        self.fc2 = nn.Linear(128, 64)
        self.fc3 = nn.Linear(64, 10)

    def forward(self, x):
        x = x.view(-1, 28 * 28)
        x = nn.functional.relu(self.fc1(x))
        x = nn.functional.relu(self.fc2(x))
        x = self.fc3(x)
        return nn.functional.log_softmax(x, dim=1)


# Step 3: Train the Model
model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01)
criterion = nn.NLLLoss()

# Training loop
epochs = 3
for epoch in range(epochs):
    for images, labels in trainloader:
        optimizer.zero_grad()
        output = model(images)
        loss = criterion(output, labels)
        loss.backward()
        optimizer.step()

torch.save(model.state_dict(), "mnist_model.pth")

Diff:

--- 
+++ 
@@ -1,19 +1,19 @@
-from PIL import Image
+import numpy as np
 import torch
 import torch.nn as nn
 import torch.optim as optim
+from PIL import Image
+from torch.utils.data import DataLoader
 from torchvision import datasets, transforms
-from torch.utils.data import DataLoader
-import numpy as np
 
 # Step 1: Load MNIST Data and Preprocess
-transform = transforms.Compose([
-    transforms.ToTensor(),
-    transforms.Normalize((0.5,), (0.5,))
-])
+transform = transforms.Compose(
+    [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
+)
 
-trainset = datasets.MNIST('.', download=True, train=True, transform=transform)
+trainset = datasets.MNIST(".", download=True, train=True, transform=transform)
 trainloader = DataLoader(trainset, batch_size=64, shuffle=True)
+
 
 # Step 2: Define the PyTorch Model
 class Net(nn.Module):
@@ -22,13 +22,14 @@
         self.fc1 = nn.Linear(28 * 28, 128)
         self.fc2 = nn.Linear(128, 64)
         self.fc3 = nn.Linear(64, 10)
-    
+
     def forward(self, x):
         x = x.view(-1, 28 * 28)
         x = nn.functional.relu(self.fc1(x))
         x = nn.functional.relu(self.fc2(x))
         x = self.fc3(x)
         return nn.functional.log_softmax(x, dim=1)
+
 
 # Step 3: Train the Model
 model = Net()

🎉 Latest improvements to Sweep:


💡 To recreate the pull request edit the issue title or description. To tweak the pull request, leave a comment on the pull request.
Join Our Discord

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

1 participant