-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathM9.py
101 lines (76 loc) · 4.68 KB
/
M9.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from sklearn.metrics import mean_squared_error
# Define the Yamada Rayleigh model function for cumulative data
def yamada_rayleigh_model_cumulative(t, a, alpha, beta, r):
return a * (1 - np.exp(-r * alpha * (1 - np.exp(-beta * t ** 2 / 2))))
cumulative_failures_data = np.array([0, 80, 109, 135, 195, 210, 221, 240, 256, 264, 286, 296, 307, 324, 328, 343, 346, 356, 370, 375, 388, 402, 412, 421])
# cumulative_failures_data = np.array([0,16,24,27,33,41,49,54,58,69,75,81,86,90,93,96,98,99,100,100,100])
# Generate time values (timesteps)
timesteps = np.arange(len(cumulative_failures_data))
# Specify the index where you want to split the data into training and testing
split_index = 20# For example, split after the 15th data point
X, y= timesteps, cumulative_failures_data
# Split the data into training and testing sets
X_train, y_train = timesteps[:split_index], cumulative_failures_data[:split_index]
X_test, y_test = timesteps[split_index-1:], cumulative_failures_data[split_index-1:]
# Perform curve fitting to optimize parameters (a and b) using only the training data
popt, pcov = curve_fit(yamada_rayleigh_model_cumulative, X_train,y_train ,method = 'trf',bounds=([0, 0, 0, 0], [np.inf, np.inf ,np.inf, np.inf]))
a_optimized, alpha_optimized,beta_optimized, r_optimized=popt
# Generate predictions using the optimized parameters for both training and testing data
failures_predictions_train = yamada_rayleigh_model_cumulative(X_train, a_optimized, alpha_optimized, beta_optimized, r_optimized)
failures_predictions_test = yamada_rayleigh_model_cumulative(X_test, a_optimized, alpha_optimized, beta_optimized, r_optimized)
k = len(X_test) # 데이터 포인트 수
p_data = failures_predictions_test # 모델의 예측값
r_data= y_test # 실제 값
p= 4 #파라미터의 갯수
bias = np.sum(p_data - r_data) / k
# Calculate Mean Squared Error (MSE)
mse = mean_squared_error(r_data, p_data)
# Calculate Mean Error of Prediction (MEOP)
meop = np.sum(np.abs(failures_predictions_test - y_test)) / (len(X_test) - p + 1)
# Calculate Absolute Error (AE)
ae = np.mean(np.abs(p_data - r_data))
# Calculate Percent Relative Error (PRR)
prr = np.sum((p_data - r_data) / p_data)
# Calculate Variance
variance_numerator = np.sum((failures_predictions_test - y_test - bias)**2)
variance_denominator = len(X_test) - 1
variance = np.sqrt(variance_numerator / variance_denominator)
# Calculate R-squared (Rsq)
numerator = np.sum((y_test - failures_predictions_test)**2)
denominator = np.sum((y_test - np.mean(y_test))**2)
rsq = 1 - (numerator / denominator)
# Calculate True Skill Statistic (TS)
numerator = np.sum((failures_predictions_test - y_test)**2)
denominator = np.sum(y_test**2)
ts = np.sqrt(numerator / denominator) * 100
# Calculate Noise (Standard Deviation of Residuals)
noise = 0
for i in range(1, len(X_test)):
lambda_ti = a_optimized*r_optimized*alpha_optimized*beta_optimized*i*np.exp(-r_optimized*alpha_optimized*(1-np.exp(-beta_optimized*i**2 /2))-beta_optimized*i**2/2) # 현재 시간 스텝에서 모델의 예측값
lambda_ti_minus_1 = a_optimized*r_optimized*alpha_optimized*beta_optimized*i-1*np.exp(-r_optimized*alpha_optimized*(1-np.exp(-beta_optimized*i-1**2 /2))-beta_optimized*i-1**2/2) # 이전 시간 스텝에서 모델의 예측값
if lambda_ti_minus_1 != 0:
noise += np.abs((lambda_ti - lambda_ti_minus_1) / lambda_ti_minus_1)
# Plot observed cumulative failures and predictions for testing data
plt.scatter(X, y, label='Observed Cumulative Failures (Training Data)')
plt.plot(X_train, failures_predictions_train, label='Predicted Cumulative Failures (Optimized Parameters)', color='red')
plt.plot(X_test, failures_predictions_test, label='Predicted Cumulative Failures (Optimized Parameters)', color='green')
plt.xlabel('Time Step')
plt.ylabel('Cumulative Failures')
plt.legend()
plt.show()
# Display the performance metrics
print(f"Optimized Parameters - a: {a_optimized}, b: {alpha_optimized}, c:{beta_optimized}, d:{r_optimized}")
print("-------------------------------------------------------------------")
print("Bias:", round(bias, 3))
print(f"Mean Squared Error (MSE): {round(mse, 3)}")
print(f"Mean Error of Prediction (MEOP): {round(meop, 3)}")
print(f"Absolute Error (AE): {round(ae, 3)}")
print(f"Noise (Standard Deviation of Residuals): {round(noise, 3)}")
print(f"Percent Relative Error (PRR): {round(prr, 3)}")
print(f"Variance: {round(variance, 3)}")
print(f"R-squared (Rsq): {round(rsq, 3)}")
print(f"True Skill Statistic (TS): {round(ts, 3)}")
M9_results_list = [round(bias, 3), round(mse, 3),round(meop, 3),round(ae, 3),round(noise, 3),round(prr, 3),round(variance, 3),round(rsq, 3),round(ts, 3)]