forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathStringObject.swift
1137 lines (991 loc) · 39.6 KB
/
StringObject.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// StringObject abstracts the bit-level interpretation and creation of the
// String struct.
//
// TODO(String docs): Word-level diagram
/*
On 64-bit platforms, the discriminator is the most significant 4 bits of the
bridge object.
┌─────────────────────╥─────┬─────┬─────┬─────┐
│ Form ║ b63 │ b62 │ b61 │ b60 │
╞═════════════════════╬═════╪═════╪═════╪═════╡
│ Immortal, Small ║ 1 │ASCII│ 1 │ 0 │
├─────────────────────╫─────┼─────┼─────┼─────┤
│ Immortal, Large ║ 1 │ 0 │ 0 │ 0 │
╞═════════════════════╬═════╪═════╪═════╪═════╡
│ Native ║ 0 │ 0 │ 0 │ 0 │
├─────────────────────╫─────┼─────┼─────┼─────┤
│ Shared ║ x │ 0 │ 0 │ 0 │
├─────────────────────╫─────┼─────┼─────┼─────┤
│ Shared, Bridged ║ 0 │ 1 │ 0 │ 0 │
╞═════════════════════╬═════╪═════╪═════╪═════╡
│ Foreign ║ x │ 0 │ 0 │ 1 │
├─────────────────────╫─────┼─────┼─────┼─────┤
│ Foreign, Bridged ║ 0 │ 1 │ 0 │ 1 │
└─────────────────────╨─────┴─────┴─────┴─────┘
b63: isImmortal: Should the Swift runtime skip ARC
- Small strings are just values, always immortal
- Large strings can sometimes be immortal, e.g. literals
b62: (large) isBridged / (small) isASCII
- For large strings, this means lazily-bridged NSString: perform ObjC ARC
- Small strings repurpose this as a dedicated bit to remember ASCII-ness
b61: isSmall: Dedicated bit to denote small strings
b60: isForeign: aka isSlow, cannot provide access to contiguous UTF-8
The canonical empty string is the zero-sized small string. It has a leading
nibble of 1110, and all other bits are 0.
A "dedicated" bit is used for the most frequent fast-path queries so that they
can compile to a fused check-and-branch, even if that burns part of the
encoding space.
On 32-bit platforms, we store an explicit discriminator (as a UInt8) with the
same encoding as above, placed in the high bits. E.g. `b62` above is in
`_discriminator`'s `b6`.
*/
@frozen @usableFromInline
internal struct _StringObject {
// Namespace to hold magic numbers
@usableFromInline @frozen
enum Nibbles {}
// Abstract the count and performance-flags containing word
@frozen @usableFromInline
struct CountAndFlags {
@usableFromInline
var _storage: UInt64
@inlinable @inline(__always)
internal init(zero: ()) { self._storage = 0 }
}
#if arch(i386) || arch(arm) || arch(wasm32)
@usableFromInline @frozen
internal enum Variant {
case immortal(UInt)
case native(AnyObject)
case bridged(_CocoaString)
@inlinable @inline(__always)
internal static func immortal(start: UnsafePointer<UInt8>) -> Variant {
let biased = UInt(bitPattern: start) &- _StringObject.nativeBias
return .immortal(biased)
}
@inlinable @inline(__always)
internal var isImmortal: Bool {
if case .immortal = self { return true }
return false
}
}
@usableFromInline
internal var _count: Int
@usableFromInline
internal var _variant: Variant
@usableFromInline
internal var _discriminator: UInt8
@usableFromInline
internal var _flags: UInt16
@inlinable @inline(__always)
init(count: Int, variant: Variant, discriminator: UInt64, flags: UInt16) {
_internalInvariant(discriminator & 0xFF00_0000_0000_0000 == discriminator,
"only the top byte can carry the discriminator and small count")
self._count = count
self._variant = variant
self._discriminator = UInt8(truncatingIfNeeded: discriminator &>> 56)
self._flags = flags
self._invariantCheck()
}
@inlinable @inline(__always)
init(variant: Variant, discriminator: UInt64, countAndFlags: CountAndFlags) {
self.init(
count: countAndFlags.count,
variant: variant,
discriminator: discriminator,
flags: countAndFlags.flags)
}
@inlinable @inline(__always)
internal var _countAndFlagsBits: UInt64 {
let rawBits = UInt64(truncatingIfNeeded: _flags) &<< 48
| UInt64(truncatingIfNeeded: _count)
return rawBits
}
#else
//
// Laid out as (_countAndFlags, _object), which allows small string contents
// to naturally start on vector-alignment.
//
@usableFromInline
internal var _countAndFlagsBits: UInt64
@usableFromInline
internal var _object: Builtin.BridgeObject
@inlinable @inline(__always)
internal init(zero: ()) {
self._countAndFlagsBits = 0
self._object = Builtin.valueToBridgeObject(UInt64(0)._value)
}
#endif
@inlinable @inline(__always)
internal var _countAndFlags: CountAndFlags {
_internalInvariant(!isSmall)
return CountAndFlags(rawUnchecked: _countAndFlagsBits)
}
}
// Raw
extension _StringObject {
@usableFromInline
internal typealias RawBitPattern = (UInt64, UInt64)
#if arch(i386) || arch(arm) || arch(wasm32)
// On 32-bit platforms, raw bit conversion is one-way only and uses the same
// layout as on 64-bit platforms.
@usableFromInline
internal var rawBits: RawBitPattern {
@inline(__always) get {
let count = UInt64(truncatingIfNeeded: UInt(bitPattern: _count))
let payload = UInt64(truncatingIfNeeded: discriminatedObjectRawBits)
& _StringObject.Nibbles.largeAddressMask
let flags = UInt64(truncatingIfNeeded: _flags)
let discr = UInt64(truncatingIfNeeded: _discriminator)
if isSmall {
// Rearrange small strings in a different way, compacting bytes into a
// contiguous sequence. See comment on small string layout below.
return (count | (payload &<< 32), flags | (discr &<< 56))
}
return (count | (flags &<< 48), payload | (discr &<< 56))
}
}
#else
@inlinable @inline(__always)
internal var rawBits: RawBitPattern {
return (_countAndFlagsBits, discriminatedObjectRawBits)
}
@inlinable @inline(__always)
internal init(
bridgeObject: Builtin.BridgeObject, countAndFlags: CountAndFlags
) {
self._object = bridgeObject
self._countAndFlagsBits = countAndFlags._storage
_invariantCheck()
}
@inlinable @inline(__always)
internal init(
object: AnyObject, discriminator: UInt64, countAndFlags: CountAndFlags
) {
let builtinRawObject: Builtin.Int64 = Builtin.reinterpretCast(object)
let builtinDiscrim: Builtin.Int64 = discriminator._value
self.init(
bridgeObject: Builtin.reinterpretCast(
Builtin.stringObjectOr_Int64(builtinRawObject, builtinDiscrim)),
countAndFlags: countAndFlags)
}
// Initializer to use for tagged (unmanaged) values
@inlinable @inline(__always)
internal init(
pointerBits: UInt64, discriminator: UInt64, countAndFlags: CountAndFlags
) {
let builtinValueBits: Builtin.Int64 = pointerBits._value
let builtinDiscrim: Builtin.Int64 = discriminator._value
self.init(
bridgeObject: Builtin.valueToBridgeObject(Builtin.stringObjectOr_Int64(
builtinValueBits, builtinDiscrim)),
countAndFlags: countAndFlags)
}
@inlinable @inline(__always)
internal init(rawUncheckedValue bits: RawBitPattern) {
self.init(zero:())
self._countAndFlagsBits = bits.0
self._object = Builtin.valueToBridgeObject(bits.1._value)
_internalInvariant(self.rawBits == bits)
}
@inlinable @inline(__always)
internal init(rawValue bits: RawBitPattern) {
self.init(rawUncheckedValue: bits)
_invariantCheck()
}
#endif
@inlinable @_transparent
internal var discriminatedObjectRawBits: UInt64 {
#if arch(i386) || arch(arm) || arch(wasm32)
let low32: UInt
switch _variant {
case .immortal(let bitPattern):
low32 = bitPattern
case .native(let storage):
low32 = Builtin.reinterpretCast(storage)
case .bridged(let object):
low32 = Builtin.reinterpretCast(object)
}
return UInt64(truncatingIfNeeded: _discriminator) &<< 56
| UInt64(truncatingIfNeeded: low32)
#else
return Builtin.reinterpretCast(_object)
#endif
}
}
// From/to raw bits for CountAndFlags
extension _StringObject.CountAndFlags {
@usableFromInline
internal typealias RawBitPattern = UInt64
@inlinable @inline(__always)
internal var rawBits: RawBitPattern {
return _storage
}
@inlinable @inline(__always)
internal init(rawUnchecked bits: RawBitPattern) {
self._storage = bits
}
@inlinable @inline(__always)
internal init(raw bits: RawBitPattern) {
self.init(rawUnchecked: bits)
_invariantCheck()
}
}
/*
Encoding is optimized for common fast creation. The canonical empty string,
ASCII small strings, as well as most literals, have all consecutive 1s in their
high nibble mask, and thus can all be encoded as a logical immediate operand
on arm64.
*/
extension _StringObject.Nibbles {
// The canonical empty sting is an empty small string
@inlinable @inline(__always)
internal static var emptyString: UInt64 {
return _StringObject.Nibbles.small(isASCII: true)
}
}
/*
Large strings can either be "native", "shared", or "foreign".
Native strings have tail-allocated storage, which begins at an offset of
`nativeBias` from the storage object's address. String literals, which reside
in the constant section, are encoded as their start address minus `nativeBias`,
unifying code paths for both literals ("immortal native") and native strings.
Native Strings are always managed by the Swift runtime.
Shared strings do not have tail-allocated storage, but can provide access
upon query to contiguous UTF-8 code units. Lazily-bridged NSStrings capable of
providing access to contiguous ASCII/UTF-8 set the ObjC bit. Accessing shared
string's pointer should always be behind a resilience barrier, permitting
future evolution.
Foreign strings cannot provide access to contiguous UTF-8. Currently, this only
encompasses lazily-bridged NSStrings that cannot be treated as "shared". Such
strings may provide access to contiguous UTF-16, or may be discontiguous in
storage. Accessing foreign strings should remain behind a resilience barrier
for future evolution. Other foreign forms are reserved for the future.
Shared and foreign strings are always created and accessed behind a resilience
barrier, providing flexibility for the future.
┌────────────┐
│ nativeBias │
├────────────┤
│ 32 │
└────────────┘
┌───────────────┬────────────┐
│ b63:b60 │ b60:b0 │
├───────────────┼────────────┤
│ discriminator │ objectAddr │
└───────────────┴────────────┘
discriminator: See comment for _StringObject.Discriminator
objectAddr: The address of the beginning of the potentially-managed object.
TODO(Future): For Foreign strings, consider allocating a bit for whether they
can provide contiguous UTF-16 code units, which would allow us to avoid doing
the full call for non-contiguous NSString.
*/
extension _StringObject.Nibbles {
// Mask for address bits, i.e. non-discriminator and non-extra high bits
@inlinable @inline(__always)
static internal var largeAddressMask: UInt64 { return 0x0FFF_FFFF_FFFF_FFFF }
// Mask for address bits, i.e. non-discriminator and non-extra high bits
@inlinable @inline(__always)
static internal var discriminatorMask: UInt64 { return ~largeAddressMask }
}
extension _StringObject.Nibbles {
// Discriminator for small strings
@inlinable @inline(__always)
internal static func small(isASCII: Bool) -> UInt64 {
return isASCII ? 0xE000_0000_0000_0000 : 0xA000_0000_0000_0000
}
// Discriminator for small strings
@inlinable @inline(__always)
internal static func small(withCount count: Int, isASCII: Bool) -> UInt64 {
_internalInvariant(count <= _SmallString.capacity)
return small(isASCII: isASCII) | UInt64(truncatingIfNeeded: count) &<< 56
}
// Discriminator for large, immortal, swift-native strings
@inlinable @inline(__always)
internal static func largeImmortal() -> UInt64 {
return 0x8000_0000_0000_0000
}
// Discriminator for large, mortal (i.e. managed), swift-native strings
@inlinable @inline(__always)
internal static func largeMortal() -> UInt64 { return 0x0000_0000_0000_0000 }
internal static func largeCocoa(providesFastUTF8: Bool) -> UInt64 {
return providesFastUTF8 ? 0x4000_0000_0000_0000 : 0x5000_0000_0000_0000
}
}
extension _StringObject {
@inlinable @inline(__always)
internal static var nativeBias: UInt {
#if arch(i386) || arch(arm) || arch(wasm32)
return 20
#else
return 32
#endif
}
@inlinable @inline(__always)
internal var isImmortal: Bool {
return (discriminatedObjectRawBits & 0x8000_0000_0000_0000) != 0
}
@inlinable @inline(__always)
internal var isMortal: Bool { return !isImmortal }
@inlinable @inline(__always)
internal var isSmall: Bool {
return (discriminatedObjectRawBits & 0x2000_0000_0000_0000) != 0
}
@inlinable @inline(__always)
internal var isLarge: Bool { return !isSmall }
// Whether this string can provide access to contiguous UTF-8 code units:
// - Small strings can by spilling to the stack
// - Large native strings can through an offset
// - Shared strings can:
// - Cocoa strings which respond to e.g. CFStringGetCStringPtr()
// - Non-Cocoa shared strings
@inlinable @inline(__always)
internal var providesFastUTF8: Bool {
return (discriminatedObjectRawBits & 0x1000_0000_0000_0000) == 0
}
@inlinable @inline(__always)
internal var isForeign: Bool { return !providesFastUTF8 }
// Whether we are native or shared, i.e. we have a backing class which
// conforms to `_AbstractStringStorage`
@inline(__always)
internal var hasStorage: Bool {
return (discriminatedObjectRawBits & 0xF000_0000_0000_0000) == 0
}
// Whether we are a mortal, native (tail-allocated) string
@inline(__always)
internal var hasNativeStorage: Bool {
// b61 on the object means isSmall, and on countAndFlags means
// isNativelyStored. We just need to check that b61 is 0 on the object and 1
// on countAndFlags.
let bits = ~discriminatedObjectRawBits & self._countAndFlagsBits
let result = bits & 0x2000_0000_0000_0000 != 0
_internalInvariant(!result || hasStorage, "native storage needs storage")
return result
}
// Whether we are a mortal, shared string (managed by Swift runtime)
internal var hasSharedStorage: Bool { return hasStorage && !hasNativeStorage }
}
// Queries conditional on being in a large or fast form.
extension _StringObject {
// Whether this string is native, i.e. tail-allocated and nul-terminated,
// presupposing it is both large and fast
@inlinable @inline(__always)
internal var largeFastIsTailAllocated: Bool {
_internalInvariant(isLarge && providesFastUTF8)
return _countAndFlags.isTailAllocated
}
// Whether this string is shared, presupposing it is both large and fast
@inline(__always)
internal var largeFastIsShared: Bool { return !largeFastIsTailAllocated }
// Whether this string is a lazily-bridged NSString, presupposing it is large
@inline(__always)
internal var largeIsCocoa: Bool {
_internalInvariant(isLarge)
return (discriminatedObjectRawBits & 0x4000_0000_0000_0000) != 0
}
// Whether this string is in one of our fastest representations:
// small or tail-allocated (i.e. mortal/immortal native)
@_alwaysEmitIntoClient
@inline(__always)
internal var isPreferredRepresentation: Bool {
return _fastPath(isSmall || _countAndFlags.isTailAllocated)
}
}
/*
On 64-bit platforms, small strings have the following per-byte layout. When
stored in memory (little-endian), their first character ('a') is in the lowest
address and their top-nibble and count is in the highest address.
┌───────────────────────────────┬─────────────────────────────────────────────┐
│ _countAndFlags │ _object │
├───┬───┬───┬───┬───┬───┬───┬───┼───┬───┬────┬────┬────┬────┬────┬────────────┤
│ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ 10 │ 11 │ 12 │ 13 │ 14 │ 15 │
├───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼────┼────┼────┼────┼────┼────────────┤
│ a │ b │ c │ d │ e │ f │ g │ h │ i │ j │ k │ l │ m │ n │ o │ 1x10 count │
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴────┴────┴────┴────┴────┴────────────┘
On 32-bit platforms, we have less space to store code units, and it isn't
contiguous. However, we still use the above layout for the RawBitPattern
representation.
┌───────────────┬───────────────────┬────────┬─────────┐
│ _count │_variant .immortal │ _discr │ _flags │
├───┬───┬───┬───┼───┬───┬───┬───┬───┼────────┼────┬────┤
│ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ 10 │ 11 │
├───┼───┼───┼───┼───┴───┴───┴───┴───┼────────┼────┼────┤
│ a │ b │ c │ d │ e f g h │1x10 cnt│ i │ j │
└───┴───┴───┴───┴───────────────────┴────────┴────┴────┘
*/
extension _StringObject {
@inlinable @inline(__always)
internal init(_ small: _SmallString) {
// Small strings are encoded as _StringObjects in reverse byte order
// on big-endian platforms. This is to match the discriminator to the
// spare bits (the most significant nibble) in a pointer.
let word1 = small.rawBits.0.littleEndian
let word2 = small.rawBits.1.littleEndian
#if arch(i386) || arch(arm) || arch(wasm32)
// On 32-bit, we need to unpack the small string.
let smallStringDiscriminatorAndCount: UInt64 = 0xFF00_0000_0000_0000
let leadingFour = Int(truncatingIfNeeded: word1)
let nextFour = UInt(truncatingIfNeeded: word1 &>> 32)
let smallDiscriminatorAndCount = word2 & smallStringDiscriminatorAndCount
let trailingTwo = UInt16(truncatingIfNeeded: word2)
self.init(
count: leadingFour,
variant: .immortal(nextFour),
discriminator: smallDiscriminatorAndCount,
flags: trailingTwo)
#else
// On 64-bit, we copy the raw bits (to host byte order).
self.init(rawValue: (word1, word2))
#endif
_internalInvariant(isSmall)
}
@inlinable
internal static func getSmallCount(fromRaw x: UInt64) -> Int {
return Int(truncatingIfNeeded: (x & 0x0F00_0000_0000_0000) &>> 56)
}
@inlinable @inline(__always)
internal var smallCount: Int {
_internalInvariant(isSmall)
return _StringObject.getSmallCount(fromRaw: discriminatedObjectRawBits)
}
@inlinable
internal static func getSmallIsASCII(fromRaw x: UInt64) -> Bool {
return x & 0x4000_0000_0000_0000 != 0
}
@inlinable @inline(__always)
internal var smallIsASCII: Bool {
_internalInvariant(isSmall)
return _StringObject.getSmallIsASCII(fromRaw: discriminatedObjectRawBits)
}
@inlinable @inline(__always)
internal init(empty:()) {
// Canonical empty pattern: small zero-length string
#if arch(i386) || arch(arm) || arch(wasm32)
self.init(
count: 0,
variant: .immortal(0),
discriminator: Nibbles.emptyString,
flags: 0)
#else
self._countAndFlagsBits = 0
self._object = Builtin.valueToBridgeObject(Nibbles.emptyString._value)
#endif
_internalInvariant(self.smallCount == 0)
_invariantCheck()
}
}
/*
// TODO(String docs): Combine this with Nibbles table, and perhaps small string
// table, into something that describes the higher-level structure of
// _StringObject.
All non-small forms share the same structure for the other half of the bits
(i.e. non-object bits) as a word containing code unit count and various
performance flags. The top 16 bits are for performance flags, which are not
semantically relevant but communicate that some operations can be done more
efficiently on this particular string, and the lower 48 are the code unit
count (aka endIndex).
┌─────────┬───────┬──────────────────┬─────────────────┬────────┬───────┐
│ b63 │ b62 │ b61 │ b60 │ b59:48 │ b47:0 │
├─────────┼───────┼──────────────────┼─────────────────┼────────┼───────┤
│ isASCII │ isNFC │ isNativelyStored │ isTailAllocated │ TBD │ count │
└─────────┴───────┴──────────────────┴─────────────────┴────────┴───────┘
isASCII: set when all code units are known to be ASCII, enabling:
- Trivial Unicode scalars, they're just the code units
- Trivial UTF-16 transcoding (just bit-extend)
- Also, isASCII always implies isNFC
isNFC: set when the contents are in normal form C
- Enables trivial lexicographical comparisons: just memcmp
- `isASCII` always implies `isNFC`, but not vice versa
isNativelyStored: set for native stored strings
- `largeAddressBits` holds an instance of `_StringStorage`.
- I.e. the start of the code units is at the stored address + `nativeBias`
isTailAllocated: contiguous UTF-8 code units starts at address + `nativeBias`
- `isNativelyStored` always implies `isTailAllocated`, but not vice versa
(e.g. literals)
- `isTailAllocated` always implies `isFastUTF8`
TBD: Reserved for future usage
- Setting a TBD bit to 1 must be semantically equivalent to 0
- I.e. it can only be used to "cache" fast-path information in the future
count: stores the number of code units, corresponds to `endIndex`.
NOTE: isNativelyStored is *specifically* allocated to b61 to align with the
bit-position of isSmall on the BridgeObject. This allows us to check for
native storage without an extra branch guarding against smallness. See
`_StringObject.hasNativeStorage` for this usage.
*/
extension _StringObject.CountAndFlags {
@inlinable @inline(__always)
internal static var countMask: UInt64 { return 0x0000_FFFF_FFFF_FFFF }
@inlinable @inline(__always)
internal static var flagsMask: UInt64 { return ~countMask }
@inlinable @inline(__always)
internal static var isASCIIMask: UInt64 { return 0x8000_0000_0000_0000 }
@inlinable @inline(__always)
internal static var isNFCMask: UInt64 { return 0x4000_0000_0000_0000 }
@inlinable @inline(__always)
internal static var isNativelyStoredMask: UInt64 {
return 0x2000_0000_0000_0000
}
@inlinable @inline(__always)
internal static var isTailAllocatedMask: UInt64 {
return 0x1000_0000_0000_0000
}
// General purpose bottom initializer
@inlinable @inline(__always)
internal init(
count: Int,
isASCII: Bool,
isNFC: Bool,
isNativelyStored: Bool,
isTailAllocated: Bool
) {
var rawBits = UInt64(truncatingIfNeeded: count)
_internalInvariant(rawBits <= _StringObject.CountAndFlags.countMask)
if isASCII {
_internalInvariant(isNFC)
rawBits |= _StringObject.CountAndFlags.isASCIIMask
}
if isNFC {
rawBits |= _StringObject.CountAndFlags.isNFCMask
}
if isNativelyStored {
_internalInvariant(isTailAllocated)
rawBits |= _StringObject.CountAndFlags.isNativelyStoredMask
}
if isTailAllocated {
rawBits |= _StringObject.CountAndFlags.isTailAllocatedMask
}
self.init(raw: rawBits)
_internalInvariant(count == self.count)
_internalInvariant(isASCII == self.isASCII)
_internalInvariant(isNFC == self.isNFC)
_internalInvariant(isNativelyStored == self.isNativelyStored)
_internalInvariant(isTailAllocated == self.isTailAllocated)
}
@inlinable @inline(__always)
internal init(count: Int, flags: UInt16) {
// Currently, we only use top 4 flags
_internalInvariant(flags & 0xF000 == flags)
let rawBits = UInt64(truncatingIfNeeded: flags) &<< 48
| UInt64(truncatingIfNeeded: count)
self.init(raw: rawBits)
_internalInvariant(self.count == count && self.flags == flags)
}
//
// Specialized initializers
//
@inlinable @inline(__always)
internal init(immortalCount: Int, isASCII: Bool) {
self.init(
count: immortalCount,
isASCII: isASCII,
isNFC: isASCII,
isNativelyStored: false,
isTailAllocated: true)
}
@inline(__always)
internal init(mortalCount: Int, isASCII: Bool) {
self.init(
count: mortalCount,
isASCII: isASCII,
isNFC: isASCII,
isNativelyStored: true,
isTailAllocated: true)
}
@inline(__always)
internal init(sharedCount: Int, isASCII: Bool) {
self.init(
count: sharedCount,
isASCII: isASCII,
isNFC: isASCII,
isNativelyStored: false,
isTailAllocated: false)
}
//
// Queries and accessors
//
@inlinable @inline(__always)
internal var count: Int {
return Int(
truncatingIfNeeded: _storage & _StringObject.CountAndFlags.countMask)
}
@inlinable @inline(__always)
internal var flags: UInt16 {
return UInt16(truncatingIfNeeded: _storage &>> 48)
}
@inlinable @inline(__always)
internal var isASCII: Bool {
return 0 != _storage & _StringObject.CountAndFlags.isASCIIMask
}
@inlinable @inline(__always)
internal var isNFC: Bool {
return 0 != _storage & _StringObject.CountAndFlags.isNFCMask
}
@inlinable @inline(__always)
internal var isNativelyStored: Bool {
return 0 != _storage & _StringObject.CountAndFlags.isNativelyStoredMask
}
@inlinable @inline(__always)
internal var isTailAllocated: Bool {
return 0 != _storage & _StringObject.CountAndFlags.isTailAllocatedMask
}
#if !INTERNAL_CHECKS_ENABLED
@inlinable @inline(__always) internal func _invariantCheck() {}
#else
@usableFromInline @inline(never) @_effects(releasenone)
internal func _invariantCheck() {
if isASCII {
_internalInvariant(isNFC)
}
if isNativelyStored {
_internalInvariant(isTailAllocated)
}
}
#endif // INTERNAL_CHECKS_ENABLED
}
// Extract
extension _StringObject {
@inlinable @inline(__always)
internal var largeCount: Int {
_internalInvariant(isLarge)
return _countAndFlags.count
}
@inlinable @inline(__always)
internal var largeAddressBits: UInt {
_internalInvariant(isLarge)
return UInt(truncatingIfNeeded:
discriminatedObjectRawBits & Nibbles.largeAddressMask)
}
@inlinable @inline(__always)
internal var nativeUTF8Start: UnsafePointer<UInt8> {
_internalInvariant(largeFastIsTailAllocated)
return UnsafePointer(
bitPattern: largeAddressBits &+ _StringObject.nativeBias
)._unsafelyUnwrappedUnchecked
}
@inlinable @inline(__always)
internal var nativeUTF8: UnsafeBufferPointer<UInt8> {
_internalInvariant(largeFastIsTailAllocated)
return UnsafeBufferPointer(start: nativeUTF8Start, count: largeCount)
}
// Resilient way to fetch a pointer
@usableFromInline @inline(never)
@_effects(releasenone)
internal func getSharedUTF8Start() -> UnsafePointer<UInt8> {
_internalInvariant(largeFastIsShared)
#if _runtime(_ObjC)
if largeIsCocoa {
return _cocoaASCIIPointer(cocoaObject)._unsafelyUnwrappedUnchecked
}
#endif
return sharedStorage.start
}
@usableFromInline
internal var sharedUTF8: UnsafeBufferPointer<UInt8> {
@_effects(releasenone) @inline(never) get {
_internalInvariant(largeFastIsShared)
let start = self.getSharedUTF8Start()
return UnsafeBufferPointer(start: start, count: largeCount)
}
}
@inline(__always)
internal var nativeStorage: __StringStorage {
#if arch(i386) || arch(arm) || arch(wasm32)
guard case .native(let storage) = _variant else {
_internalInvariantFailure()
}
return _unsafeUncheckedDowncast(storage, to: __StringStorage.self)
#else
_internalInvariant(hasNativeStorage)
return Builtin.reinterpretCast(largeAddressBits)
#endif
}
@inline(__always)
internal var sharedStorage: __SharedStringStorage {
#if arch(i386) || arch(arm) || arch(wasm32)
guard case .native(let storage) = _variant else {
_internalInvariantFailure()
}
return _unsafeUncheckedDowncast(storage, to: __SharedStringStorage.self)
#else
_internalInvariant(largeFastIsShared && !largeIsCocoa)
_internalInvariant(hasSharedStorage)
return Builtin.reinterpretCast(largeAddressBits)
#endif
}
@inline(__always)
internal var cocoaObject: AnyObject {
#if arch(i386) || arch(arm) || arch(wasm32)
guard case .bridged(let object) = _variant else {
_internalInvariantFailure()
}
return object
#else
_internalInvariant(largeIsCocoa && !isImmortal)
return Builtin.reinterpretCast(largeAddressBits)
#endif
}
}
// Aggregate queries / abstractions
extension _StringObject {
// The number of code units stored
//
// TODO(String micro-performance): Check generated code
@inlinable @inline(__always)
internal var count: Int { return isSmall ? smallCount : largeCount }
//
// Whether the string is all ASCII
//
@inlinable @inline(__always)
internal var isASCII: Bool {
if isSmall { return smallIsASCII }
return _countAndFlags.isASCII
}
@inline(__always)
internal var isNFC: Bool {
if isSmall {
// TODO(String performance): Worth implementing more sophisiticated
// check, or else performing normalization on- construction. For now,
// approximate it with isASCII
return smallIsASCII
}
return _countAndFlags.isNFC
}
// Get access to fast UTF-8 contents for large strings which provide it.
@inlinable @inline(__always)
internal var fastUTF8: UnsafeBufferPointer<UInt8> {
_internalInvariant(self.isLarge && self.providesFastUTF8)
guard _fastPath(self.largeFastIsTailAllocated) else {
return sharedUTF8
}
return UnsafeBufferPointer(
start: self.nativeUTF8Start, count: self.largeCount)
}
// Whether the object stored can be bridged directly as a NSString
@usableFromInline // @opaque
internal var hasObjCBridgeableObject: Bool {
@_effects(releasenone) get {
// Currently, all mortal objects can zero-cost bridge
return !self.isImmortal
}
}
// Fetch the stored subclass of NSString for bridging
@inline(__always)
internal var objCBridgeableObject: AnyObject {
_internalInvariant(hasObjCBridgeableObject)
return Builtin.reinterpretCast(largeAddressBits)
}
// Whether the object provides fast UTF-8 contents that are nul-terminated
@inlinable
internal var isFastZeroTerminated: Bool {
if _slowPath(!providesFastUTF8) { return false }
// Small strings nul-terminate when spilling for contiguous access
if isSmall { return true }
// TODO(String performance): Use performance flag, which could be more
// inclusive. For now, we only know native strings and small strings (when
// accessed) are. We could also know about some shared strings.
return largeFastIsTailAllocated
}
}
// Object creation
extension _StringObject {
@inlinable @inline(__always)
internal init(immortal bufPtr: UnsafeBufferPointer<UInt8>, isASCII: Bool) {
let countAndFlags = CountAndFlags(
immortalCount: bufPtr.count, isASCII: isASCII)
#if arch(i386) || arch(arm) || arch(wasm32)
self.init(
variant: .immortal(start: bufPtr.baseAddress._unsafelyUnwrappedUnchecked),
discriminator: Nibbles.largeImmortal(),
countAndFlags: countAndFlags)
#else
// We bias to align code paths for mortal and immortal strings
let biasedAddress = UInt(
bitPattern: bufPtr.baseAddress._unsafelyUnwrappedUnchecked
) &- _StringObject.nativeBias
self.init(
pointerBits: UInt64(truncatingIfNeeded: biasedAddress),
discriminator: Nibbles.largeImmortal(),
countAndFlags: countAndFlags)
#endif
}
@inline(__always)
internal init(_ storage: __StringStorage) {
#if arch(i386) || arch(arm) || arch(wasm32)
self.init(
variant: .native(storage),
discriminator: Nibbles.largeMortal(),
countAndFlags: storage._countAndFlags)
#else
self.init(
object: storage,
discriminator: Nibbles.largeMortal(),
countAndFlags: storage._countAndFlags)
#endif
}
internal init(_ storage: __SharedStringStorage) {
#if arch(i386) || arch(arm) || arch(wasm32)
self.init(
variant: .native(storage),
discriminator: Nibbles.largeMortal(),
countAndFlags: storage._countAndFlags)
#else
self.init(
object: storage,
discriminator: Nibbles.largeMortal(),
countAndFlags: storage._countAndFlags)
#endif
}
internal init(
cocoa: AnyObject, providesFastUTF8: Bool, isASCII: Bool, length: Int
) {
let countAndFlags = CountAndFlags(sharedCount: length, isASCII: isASCII)
let discriminator = Nibbles.largeCocoa(providesFastUTF8: providesFastUTF8)
#if arch(i386) || arch(arm) || arch(wasm32)
self.init(
variant: .bridged(cocoa),
discriminator: discriminator,
countAndFlags: countAndFlags)
#else
self.init(
object: cocoa, discriminator: discriminator, countAndFlags: countAndFlags)
_internalInvariant(self.largeAddressBits == Builtin.reinterpretCast(cocoa))
_internalInvariant(self.providesFastUTF8 == providesFastUTF8)
_internalInvariant(self.largeCount == length)