forked from openleap/PyLeapMouse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGeometry.py
executable file
·158 lines (146 loc) · 4.64 KB
/
Geometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#William Yager
#Leap Python mouse controller POC
import math
from leap import Leap
def to_vector(leap_vector):
return vector(leap_vector.x, leap_vector.y, leap_vector.z)
class vector(object):
def __init__(self, x, y, z):
self.x = x
self.y = y
self.z = z
def __add__(self, other):
return vector(self.x + other.x, self.y+other.y, self.z+other.z)
def __sub__(self, other):
return vector(self.x - other.x, self.y - other.y, self.z - other.z)
def __mul__(self, other): #The * operator is dot product
return self.dot(other)
def dot(self, other):
return self.x*other.x + self.y*other.y+self.z*other.z
def __pow__(self, other): #The ** operator allows us to multiply a vector by a scalar
return self.scalar_mult(other)
def scalar_mult(self, other):
return vector(self.x * other, self.y*other, self.z*other)
def cross(self, other):
x = self.y * other.z - other.y * self.z
y = -(self.x * other.z - other.x * self.z)
z = self.x * other.y - other.x * self.y
return vector(x,y,z)
def __mod__(self, other): #The % operator is cross product
return self.cross(other)
def norm(self): #Length of self
return math.sqrt(1.0*self.dot(self))
def distance(self, other):
return (self-other).norm() #Find difference and then the length of it
def unit_vector(self):
magnitude = self.norm()
return vector(1.0*self.x/magnitude, 1.0*self.y/magnitude, 1.0*self.z/magnitude)
def to_leap(self):
return Leap.Vector(self.x, self.y, self.z)
def pitch(self):
return math.atan(1.0*self.z/self.y)
def roll(self):
return math.atan(1.0*self.x/self.y)
def yaw(self):
return math.atan(1.0*self.x/self.z)
class segment(object):
def __init__(self, point1, point2):
self.point1 = point1
self.point2 = point2
#Shortest distance code based off of http://geomalgorithms.com/a07-_distance.html
def min_distance_infinite(self, other): #Return shortest distance between two lines
u = self.point2 - self.point1
v = other.point2 - other.point1
w = self.point1 - other.point1
a = u * u
b = u * v
c = v * v
d = u * w
e = v * w
D = a * c - b * b
sc = 0.0
tc = 0.0
basically_zero = .000000001
if D < basically_zero:
sc = 0.0
if b > c:
tc = d/b
else:
tc = e/c
else:
sc = (b * e - c * d) / D
tc = (a * e - b * d) / D
dP = w + u**sc - v**tc
return dP.norm()
def min_distance_finite(self, other): #Return shortest distance between two segments
u = self.point2 - self.point1
v = other.point2 - other.point1
w = self.point1 - other.point1
a = u * u #* here is cross product
b = u * v
c = v * v
d = u * w
e = v * w
D = a * c - b * b
sc = 0.0
sN = 0.0
sD = D
tc = 0.0
tN = 0.0
tD = D
basically_zero = .000000001
if D < basically_zero:
sN = 0.0
sD = 1.0
tN = e
tD = c
else:
sN = (b*e - c*d)
tN = (a*e - b*d)
if sN < 0.0:
sN = 0.0
tN = e
tD = c
elif sN > sD:
sN = sD
tN = e + b
tD = c
if(tN < 0.0):
tN = 0.0
if(-d < 0.0):
sN = 0.0
elif (-d > a):
sN = sD
else:
sN = -d
sD = a
elif tN > tD:
tN = tD
if (-d + b) < 0.0:
sN = 0
elif (-d + b) > a:
sN = sD
else:
sN = (-d + b)
sD = a
if abs(sN) < basically_zero:
sc = 0
else:
sc = sN / sD
if abs(tN) < basically_zero:
tc = 0.0
else:
tc = tN / tD
dP = w + u**sc - v**tc #I'm pretty sure dP is the actual vector linking the lines
return dP.norm()
class line(segment):
def __init__(self, point1, direction_vector):
self.point1 = point1
self.direction = direction_vector.unit_vector()
self.point2 = point1 + self.direction
def angle_between_vectors(vector1, vector2):
#cos(theta)=dot product / (|a|*|b|)
top = vector1 * vector2 #* is dot product
bottom = vector1.norm() * vector2.norm()
angle = math.acos(top/bottom)
return angle #In radians