forked from openleap/PyLeapMouse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMiscFunctions.py
141 lines (120 loc) · 6.89 KB
/
MiscFunctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#William Yager
#Leap Python mouse controller POC
#This file contains miscellaneous functions that are not interface-specific
import math
from leap import Leap
import Geometry
#Smooths the mouse's position
class mouse_position_smoother(object):
def __init__(self, smooth_aggressiveness, smooth_falloff):
#Input validation
if smooth_aggressiveness < 1:
raise Exception("Smooth aggressiveness must be greater than 1.")
if smooth_falloff < 1:
raise Exception("Smooth falloff must be greater than 1.0.")
self.previous_positions = []
self.smooth_falloff = smooth_falloff
self.smooth_aggressiveness = int(smooth_aggressiveness)
def update(self, (x,y)):
self.previous_positions.append((x,y))
if len(self.previous_positions) > self.smooth_aggressiveness:
del self.previous_positions[0]
return self.get_current_smooth_value()
def get_current_smooth_value(self):
smooth_x = 0
smooth_y = 0
total_weight = 0
num_positions = len(self.previous_positions)
for position in range(0, num_positions):
weight = 1 / (self.smooth_falloff ** (num_positions - position))
total_weight += weight
smooth_x += self.previous_positions[position][0] * weight
smooth_y += self.previous_positions[position][1] * weight
smooth_x /= total_weight
smooth_y /= total_weight
return smooth_x, smooth_y
class debouncer(object): #Takes a binary "signal" and debounces it.
def __init__(self, debounce_time): #Takes as an argument the number of opposite samples it needs to debounce.
self.opposite_counter = 0 #Number of contrary samples vs agreeing samples.
self.state = False #Default state.
self.debounce_time = debounce_time #Number of samples to change states (debouncing threshold).
def signal(self, value): #Update the signal.
if value != self.state: #We are receiving a different signal than what we have been.
self.opposite_counter = self.opposite_counter + 1
else: #We are recieving the same signal that we have been
self.opposite_counter = self.opposite_counter - 1
if self.opposite_counter < 0: self.opposite_counter = 0
if self.opposite_counter > self.debounce_time: self.opposite_counter = self.debounce_time
#No sense building up negative or huge numbers of agreeing/contrary samples
if self.opposite_counter >= self.debounce_time: #We have seen a lot of evidence that our internal state is wrong
self.state = not self.state #Change internal state
self.opposite_counter = 0 #We reset the number of contrary samples
return self.state #Return the debounced signal (may help keep code cleaner)
class n_state_debouncer(object): #A signal debouncer that has `number_of_states` states
def __init__(self, debounce_time, number_of_states):
self.state_counters = [0]*number_of_states #One counter for every state
self.state = 0 #Default state
self.debounce_time = debounce_time
def signal(self, signal_value):
if signal_value < 0 or signal_value >= len(self.state_counters): #Check for invalid state
raise Exception("Invalid state. Out of bounds.")
return
self.state_counters[signal_value] = self.state_counters[signal_value] + 1 #Increment signalled state
for i in range(0,len(self.state_counters)):
if i is not signal_value: self.state_counters[i] = self.state_counters[i] - 1 #Decrement all others
for i in range(0,len(self.state_counters)): #Fix bounds and check for a confirmed state change
if self.state_counters[i] < 0: self.state_counters[i] = 0
if self.state_counters[i] >= self.debounce_time: #Confirmed new state at index i
self.state_counters[i] = self.debounce_time
for x in range(0,len(self.state_counters)):
if x is not i: self.state_counters[x] = 0 #Zero out all other state counters
self.state = i #Save the new state
return self.state
def sort_fingers_by_distance_from_screen(fingers):
new_finger_list = [finger for finger in fingers] #Copy the list of fingers
new_finger_list.sort(key=lambda x: x.tip_position.z) #Sort by increasing z
return new_finger_list #Lower indices = closer to screen
def has_thumb(hand): #The level of accuracy with this function is surprisingly high
if hand.fingers.empty: #We assume no thumbs
return False
distances = []
palm_position = Geometry.to_vector(hand.palm_position)
for finger in hand.fingers: #Make a list of all distances from the center of the palm
finger_position = Geometry.to_vector(finger.tip_position)
difference = finger_position - palm_position
distances.append(difference.norm()) #Record the distance from the palm to the fingertip
average = sum(distances)/len(distances)
minimum = min(distances)
if average - minimum > 20: #Check if the finger closest to the palm is more than 20mm closer than the average distance
#Note: I have recieved feedback that a smaller value may work better. I do have big hands, however
return True
else:
return False
def has_two_pointer_fingers(hand): #Checks if we are using two pointer fingers
if len(hand.fingers) < 2: #Obviously not
return False
sorted_fingers = sort_fingers_by_distance_from_screen(hand.fingers)
finger1_pos = Geometry.to_vector(sorted_fingers[0].tip_position)
finger2_pos = Geometry.to_vector(sorted_fingers[1].tip_position)
difference = finger1_pos - finger2_pos
if difference.norm() < 40: #Check if the fingertips are close together
return True
else:
return False
#Check if the vectors of length 'vector_length' shooting out of a pair of fingers intersect within tolerance 'tolerance'
def finger_vectors_intersect(finger1, finger2, vector_length, tolerance):
#Take Leap Finger objects and produce two line segment objects
finger_1_location = Geometry.to_vector(finger1.tip_position)
finger_1_direction = Geometry.to_vector(finger1.direction)
finger_1_vector = finger_1_direction.unit_vector() ** vector_length; #** is scalar mult
finger_1_endpoint = finger_1_vector + finger_1_location
finger_1_segment = Geometry.segment(finger_1_location, finger_1_endpoint)
finger_2_location = Geometry.to_vector(finger2.tip_position)
finger_2_direction = Geometry.to_vector(finger2.direction)
finger_2_vector = finger_2_direction.unit_vector() ** vector_length; #** is scalar mult
finger_2_endpoint = finger_2_vector + finger_2_location
finger_2_segment = Geometry.segment(finger_2_location, finger_2_endpoint)
minimum_distance = finger_1_segment.min_distance_finite(finger_2_segment)
if minimum_distance <= tolerance:
return True
return False