-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathsymengine_wrapper.pyx
5374 lines (4312 loc) · 161 KB
/
symengine_wrapper.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from cython.operator cimport dereference as deref, preincrement as inc
cimport symengine
from symengine cimport (RCP, pair, map_basic_basic, umap_int_basic,
umap_int_basic_iterator, umap_basic_num, umap_basic_num_iterator,
rcp_const_basic, std_pair_short_rcp_const_basic,
rcp_const_seriescoeffinterface, CRCPBasic)
from libcpp cimport bool as cppbool
from libcpp.string cimport string
from libcpp.vector cimport vector
from cpython cimport PyObject, Py_XINCREF, Py_XDECREF, \
PyObject_CallMethodObjArgs
from libc.string cimport memcpy
import cython
import itertools
import numbers
from operator import mul
from functools import reduce
import collections
import warnings
from symengine.utilities import is_sequence
import os
import sys
from cpython.pycapsule cimport PyCapsule_GetPointer
from collections.abc import MutableMapping
try:
import numpy as np
# Lambdify requires NumPy (since b713a61, see gh-112)
have_numpy = True
except ImportError:
have_numpy = False
include "config.pxi"
class SympifyError(Exception):
pass
cpdef object capsule_to_basic(object capsule):
cdef CRCPBasic *p = <CRCPBasic*>PyCapsule_GetPointer(capsule, NULL)
return c2py(p.m)
cpdef void assign_to_capsule(object capsule, object value):
cdef CRCPBasic *p_cap = <CRCPBasic*>PyCapsule_GetPointer(capsule, NULL)
cdef Basic v = sympify(value)
p_cap.m = v.thisptr
cdef object c2py(rcp_const_basic o):
cdef Basic r
if (symengine.is_a_Add(deref(o))):
r = Expr.__new__(Add)
elif (symengine.is_a_Mul(deref(o))):
r = Expr.__new__(Mul)
elif (symengine.is_a_Pow(deref(o))):
r = Expr.__new__(Pow)
elif (symengine.is_a_Integer(deref(o))):
if (deref(symengine.rcp_static_cast_Integer(o)).is_zero()):
return S.Zero
elif (deref(symengine.rcp_static_cast_Integer(o)).is_one()):
return S.One
elif (deref(symengine.rcp_static_cast_Integer(o)).is_minus_one()):
return S.NegativeOne
r = Number.__new__(Integer)
elif (symengine.is_a_Rational(deref(o))):
r = S.Half
if (symengine.eq(deref(o), deref(r.thisptr))):
return S.Half
r = Number.__new__(Rational)
elif (symengine.is_a_Complex(deref(o))):
r = S.ImaginaryUnit
if (symengine.eq(deref(o), deref(r.thisptr))):
return S.ImaginaryUnit
r = Complex.__new__(Complex)
elif (symengine.is_a_Dummy(deref(o))):
r = Symbol.__new__(Dummy)
elif (symengine.is_a_Symbol(deref(o))):
if (symengine.is_a_PySymbol(deref(o))):
return <object>(deref(symengine.rcp_static_cast_PySymbol(o)).get_py_object())
r = Symbol.__new__(Symbol)
elif (symengine.is_a_Constant(deref(o))):
r = S.Pi
if (symengine.eq(deref(o), deref(r.thisptr))):
return S.Pi
r = S.Exp1
if (symengine.eq(deref(o), deref(r.thisptr))):
return S.Exp1
r = S.GoldenRatio
if (symengine.eq(deref(o), deref(r.thisptr))):
return S.GoldenRatio
r = S.Catalan
if (symengine.eq(deref(o), deref(r.thisptr))):
return S.Catalan
r = S.EulerGamma
if (symengine.eq(deref(o), deref(r.thisptr))):
return S.EulerGamma
r = Constant.__new__(Constant)
elif (symengine.is_a_Infty(deref(o))):
if (deref(symengine.rcp_static_cast_Infty(o)).is_positive()):
return S.Infinity
elif (deref(symengine.rcp_static_cast_Infty(o)).is_negative()):
return S.NegativeInfinity
return S.ComplexInfinity
elif (symengine.is_a_NaN(deref(o))):
return S.NaN
elif (symengine.is_a_PyFunction(deref(o))):
r = PyFunction.__new__(PyFunction)
elif (symengine.is_a_FunctionSymbol(deref(o))):
r = FunctionSymbol.__new__(FunctionSymbol)
elif (symengine.is_a_Abs(deref(o))):
r = Function.__new__(Abs)
elif (symengine.is_a_Max(deref(o))):
r = Function.__new__(Max)
elif (symengine.is_a_Min(deref(o))):
r = Function.__new__(Min)
elif (symengine.is_a_BooleanAtom(deref(o))):
if (deref(symengine.rcp_static_cast_BooleanAtom(o)).get_val()):
return S.true
return S.false
elif (symengine.is_a_Equality(deref(o))):
r = Relational.__new__(Equality)
elif (symengine.is_a_Unequality(deref(o))):
r = Relational.__new__(Unequality)
elif (symengine.is_a_LessThan(deref(o))):
r = Relational.__new__(LessThan)
elif (symengine.is_a_StrictLessThan(deref(o))):
r = Relational.__new__(StrictLessThan)
elif (symengine.is_a_Gamma(deref(o))):
r = Function.__new__(Gamma)
elif (symengine.is_a_Derivative(deref(o))):
r = Expr.__new__(Derivative)
elif (symengine.is_a_Subs(deref(o))):
r = Expr.__new__(Subs)
elif (symengine.is_a_RealDouble(deref(o))):
r = Number.__new__(RealDouble)
elif (symengine.is_a_ComplexDouble(deref(o))):
r = ComplexDouble.__new__(ComplexDouble)
elif (symengine.is_a_RealMPFR(deref(o))):
r = Number.__new__(RealMPFR)
elif (symengine.is_a_ComplexMPC(deref(o))):
r = ComplexMPC.__new__(ComplexMPC)
elif (symengine.is_a_Log(deref(o))):
r = Function.__new__(Log)
elif (symengine.is_a_Sin(deref(o))):
r = Function.__new__(Sin)
elif (symengine.is_a_Cos(deref(o))):
r = Function.__new__(Cos)
elif (symengine.is_a_Tan(deref(o))):
r = Function.__new__(Tan)
elif (symengine.is_a_Cot(deref(o))):
r = Function.__new__(Cot)
elif (symengine.is_a_Csc(deref(o))):
r = Function.__new__(Csc)
elif (symengine.is_a_Sec(deref(o))):
r = Function.__new__(Sec)
elif (symengine.is_a_ASin(deref(o))):
r = Function.__new__(ASin)
elif (symengine.is_a_ACos(deref(o))):
r = Function.__new__(ACos)
elif (symengine.is_a_ATan(deref(o))):
r = Function.__new__(ATan)
elif (symengine.is_a_ACot(deref(o))):
r = Function.__new__(ACot)
elif (symengine.is_a_ACsc(deref(o))):
r = Function.__new__(ACsc)
elif (symengine.is_a_ASec(deref(o))):
r = Function.__new__(ASec)
elif (symengine.is_a_Sinh(deref(o))):
r = Function.__new__(Sinh)
elif (symengine.is_a_Cosh(deref(o))):
r = Function.__new__(Cosh)
elif (symengine.is_a_Tanh(deref(o))):
r = Function.__new__(Tanh)
elif (symengine.is_a_Coth(deref(o))):
r = Function.__new__(Coth)
elif (symengine.is_a_Csch(deref(o))):
r = Function.__new__(Csch)
elif (symengine.is_a_Sech(deref(o))):
r = Function.__new__(Sech)
elif (symengine.is_a_ASinh(deref(o))):
r = Function.__new__(ASinh)
elif (symengine.is_a_ACosh(deref(o))):
r = Function.__new__(ACosh)
elif (symengine.is_a_ATanh(deref(o))):
r = Function.__new__(ATanh)
elif (symengine.is_a_ACoth(deref(o))):
r = Function.__new__(ACoth)
elif (symengine.is_a_ACsch(deref(o))):
r = Function.__new__(ACsch)
elif (symengine.is_a_ASech(deref(o))):
r = Function.__new__(ASech)
elif (symengine.is_a_ATan2(deref(o))):
r = Function.__new__(ATan2)
elif (symengine.is_a_LambertW(deref(o))):
r = Function.__new__(LambertW)
elif (symengine.is_a_Zeta(deref(o))):
r = Function.__new__(zeta)
elif (symengine.is_a_DirichletEta(deref(o))):
r = Function.__new__(dirichlet_eta)
elif (symengine.is_a_KroneckerDelta(deref(o))):
r = Function.__new__(KroneckerDelta)
elif (symengine.is_a_LeviCivita(deref(o))):
r = Function.__new__(LeviCivita)
elif (symengine.is_a_Erf(deref(o))):
r = Function.__new__(erf)
elif (symengine.is_a_Erfc(deref(o))):
r = Function.__new__(erfc)
elif (symengine.is_a_LowerGamma(deref(o))):
r = Function.__new__(lowergamma)
elif (symengine.is_a_UpperGamma(deref(o))):
r = Function.__new__(uppergamma)
elif (symengine.is_a_LogGamma(deref(o))):
r = Function.__new__(loggamma)
elif (symengine.is_a_Beta(deref(o))):
r = Function.__new__(beta)
elif (symengine.is_a_PolyGamma(deref(o))):
r = Function.__new__(polygamma)
elif (symengine.is_a_Sign(deref(o))):
r = Function.__new__(sign)
elif (symengine.is_a_Floor(deref(o))):
r = Function.__new__(floor)
elif (symengine.is_a_Ceiling(deref(o))):
r = Function.__new__(ceiling)
elif (symengine.is_a_Conjugate(deref(o))):
r = Function.__new__(conjugate)
elif (symengine.is_a_PyNumber(deref(o))):
r = PyNumber.__new__(PyNumber)
elif (symengine.is_a_Piecewise(deref(o))):
r = Function.__new__(Piecewise)
elif (symengine.is_a_Contains(deref(o))):
r = Boolean.__new__(Contains)
elif (symengine.is_a_Interval(deref(o))):
r = Set.__new__(Interval)
elif (symengine.is_a_EmptySet(deref(o))):
r = Set.__new__(EmptySet)
elif (symengine.is_a_Reals(deref(o))):
r = Set.__new__(Reals)
elif (symengine.is_a_Integers(deref(o))):
r = Set.__new__(Integers)
elif (symengine.is_a_UniversalSet(deref(o))):
r = Set.__new__(UniversalSet)
elif (symengine.is_a_FiniteSet(deref(o))):
r = Set.__new__(FiniteSet)
elif (symengine.is_a_Union(deref(o))):
r = Set.__new__(Union)
elif (symengine.is_a_Complement(deref(o))):
r = Set.__new__(Complement)
elif (symengine.is_a_ConditionSet(deref(o))):
r = Set.__new__(ConditionSet)
elif (symengine.is_a_ImageSet(deref(o))):
r = Set.__new__(ImageSet)
elif (symengine.is_a_And(deref(o))):
r = Boolean.__new__(And)
elif (symengine.is_a_Not(deref(o))):
r = Boolean.__new__(Not)
elif (symengine.is_a_Or(deref(o))):
r = Boolean.__new__(Or)
elif (symengine.is_a_Xor(deref(o))):
r = Boolean.__new__(Xor)
elif (symengine.is_a_UnevaluatedExpr(deref(o))):
r = Function.__new__(UnevaluatedExpr)
else:
raise Exception("Unsupported SymEngine class.")
r.thisptr = o
return r
def sympy2symengine(a, raise_error=False):
"""
Converts 'a' from SymPy to SymEngine.
If the expression cannot be converted, it either returns None (if
raise_error==False) or raises a SympifyError exception (if
raise_error==True).
"""
import sympy
from sympy.core.function import AppliedUndef as sympy_AppliedUndef
if isinstance(a, sympy.Symbol):
return Symbol(a.name)
elif isinstance(a, sympy.Dummy):
return Dummy(a.name)
elif isinstance(a, sympy.Mul):
return mul(*[sympy2symengine(x, raise_error) for x in a.args])
elif isinstance(a, sympy.Add):
return add(*[sympy2symengine(x, raise_error) for x in a.args])
elif isinstance(a, (sympy.Pow, sympy.exp)):
x, y = a.as_base_exp()
return sympy2symengine(x, raise_error) ** sympy2symengine(y, raise_error)
elif isinstance(a, sympy.Integer):
return Integer(a.p)
elif isinstance(a, sympy.Rational):
return Integer(a.p) / Integer(a.q)
elif isinstance(a, sympy.Float):
IF HAVE_SYMENGINE_MPFR:
if a._prec > 53:
return RealMPFR(str(a), a._prec)
else:
return RealDouble(float(str(a)))
ELSE:
return RealDouble(float(str(a)))
elif a is sympy.I:
return I
elif a is sympy.E:
return E
elif a is sympy.pi:
return pi
elif a is sympy.GoldenRatio:
return golden_ratio
elif a is sympy.Catalan:
return catalan
elif a is sympy.EulerGamma:
return eulergamma
elif a is sympy.S.NegativeInfinity:
return minus_oo
elif a is sympy.S.Infinity:
return oo
elif a is sympy.S.ComplexInfinity:
return zoo
elif a is sympy.nan:
return nan
elif a is sympy.S.true:
return true
elif a is sympy.S.false:
return false
elif isinstance(a, sympy.functions.elementary.trigonometric.TrigonometricFunction):
if isinstance(a, sympy.sin):
return sin(a.args[0])
elif isinstance(a, sympy.cos):
return cos(a.args[0])
elif isinstance(a, sympy.tan):
return tan(a.args[0])
elif isinstance(a, sympy.cot):
return cot(a.args[0])
elif isinstance(a, sympy.csc):
return csc(a.args[0])
elif isinstance(a, sympy.sec):
return sec(a.args[0])
elif isinstance(a, sympy.functions.elementary.trigonometric.InverseTrigonometricFunction):
if isinstance(a, sympy.asin):
return asin(a.args[0])
elif isinstance(a, sympy.acos):
return acos(a.args[0])
elif isinstance(a, sympy.atan):
return atan(a.args[0])
elif isinstance(a, sympy.acot):
return acot(a.args[0])
elif isinstance(a, sympy.acsc):
return acsc(a.args[0])
elif isinstance(a, sympy.asec):
return asec(a.args[0])
elif isinstance(a, sympy.atan2):
return atan2(*a.args)
elif isinstance(a, sympy.functions.elementary.hyperbolic.HyperbolicFunction):
if isinstance(a, sympy.sinh):
return sinh(a.args[0])
elif isinstance(a, sympy.cosh):
return cosh(a.args[0])
elif isinstance(a, sympy.tanh):
return tanh(a.args[0])
elif isinstance(a, sympy.coth):
return coth(a.args[0])
elif isinstance(a, sympy.csch):
return csch(a.args[0])
elif isinstance(a, sympy.sech):
return sech(a.args[0])
elif isinstance(a, sympy.asinh):
return asinh(a.args[0])
elif isinstance(a, sympy.acosh):
return acosh(a.args[0])
elif isinstance(a, sympy.atanh):
return atanh(a.args[0])
elif isinstance(a, sympy.acoth):
return acoth(a.args[0])
elif isinstance(a, sympy.log):
return log(a.args[0])
elif isinstance(a, sympy.Abs):
return abs(sympy2symengine(a.args[0], raise_error))
elif isinstance(a, sympy.Max):
return _max(*a.args)
elif isinstance(a, sympy.Min):
return _min(*a.args)
elif isinstance(a, sympy.Equality):
return eq(*a.args)
elif isinstance(a, sympy.Unequality):
return ne(*a.args)
elif isinstance(a, sympy.GreaterThan):
return ge(*a.args)
elif isinstance(a, sympy.StrictGreaterThan):
return gt(*a.args)
elif isinstance(a, sympy.LessThan):
return le(*a.args)
elif isinstance(a, sympy.StrictLessThan):
return lt(*a.args)
elif isinstance(a, sympy.LambertW):
return LambertW(a.args[0])
elif isinstance(a, sympy.zeta):
return zeta(*a.args)
elif isinstance(a, sympy.dirichlet_eta):
return dirichlet_eta(a.args[0])
elif isinstance(a, sympy.KroneckerDelta):
return KroneckerDelta(*a.args)
elif isinstance(a, sympy.LeviCivita):
return LeviCivita(*a.args)
elif isinstance(a, sympy.erf):
return erf(a.args[0])
elif isinstance(a, sympy.erfc):
return erfc(a.args[0])
elif isinstance(a, sympy.lowergamma):
return lowergamma(*a.args)
elif isinstance(a, sympy.uppergamma):
return uppergamma(*a.args)
elif isinstance(a, sympy.loggamma):
return loggamma(a.args[0])
elif isinstance(a, sympy.beta):
return beta(*a.args)
elif isinstance(a, sympy.polygamma):
return polygamma(*a.args)
elif isinstance(a, sympy.sign):
return sign(a.args[0])
elif isinstance(a, sympy.floor):
return floor(a.args[0])
elif isinstance(a, sympy.ceiling):
return ceiling(a.args[0])
elif isinstance(a, sympy.conjugate):
return conjugate(a.args[0])
elif isinstance(a, sympy.And):
return logical_and(*a.args)
elif isinstance(a, sympy.Or):
return logical_or(*a.args)
elif isinstance(a, sympy.Not):
return logical_not(a.args[0])
elif isinstance(a, sympy.Nor):
return Nor(*a.args)
elif isinstance(a, sympy.Nand):
return Nand(*a.args)
elif isinstance(a, sympy.Xor):
return logical_xor(*a.args)
elif isinstance(a, sympy.gamma):
return gamma(a.args[0])
elif isinstance(a, sympy.Derivative):
return Derivative(a.expr, *a.variables)
elif isinstance(a, sympy.Subs):
return Subs(a.expr, a.variables, a.point)
elif isinstance(a, sympy_AppliedUndef):
name = str(a.func)
return function_symbol(name, *(a.args))
elif isinstance(a, (sympy.Piecewise)):
return piecewise(*(a.args))
elif a is sympy.S.Reals:
return S.Reals
elif a is sympy.S.Integers:
return S.Integers
elif isinstance(a, sympy.Interval):
return interval(*(a.args))
elif a is sympy.S.EmptySet:
return S.EmptySet
elif a is sympy.S.UniversalSet:
return S.UniversalSet
elif isinstance(a, sympy.FiniteSet):
return finiteset(*(a.args))
elif isinstance(a, sympy.Contains):
return contains(*(a.args))
elif isinstance(a, sympy.Union):
return set_union(*(a.args))
elif isinstance(a, sympy.Intersection):
return set_intersection(*(a.args))
elif isinstance(a, sympy.Complement):
return set_complement(*(a.args))
elif isinstance(a, sympy.ImageSet):
return imageset(*(a.args))
elif isinstance(a, sympy.Function):
return PyFunction(a, a.args, a.func, sympy_module)
elif isinstance(a, sympy.UnevaluatedExpr):
return UnevaluatedExpr(a.args[0])
elif isinstance(a, sympy.MatrixBase):
row, col = a.shape
v = []
for r in a.tolist():
for e in r:
v.append(e)
if isinstance(a, sympy.MutableDenseMatrix):
return MutableDenseMatrix(row, col, v)
elif isinstance(a, sympy.ImmutableDenseMatrix):
return ImmutableDenseMatrix(row, col, v)
else:
raise NotImplementedError
elif isinstance(a, sympy.polys.domains.modularinteger.ModularInteger):
return PyNumber(a, sympy_module)
elif sympy.__version__ > '1.0':
if isinstance(a, sympy.acsch):
return acsch(a.args[0])
elif isinstance(a, sympy.asech):
return asech(a.args[0])
elif isinstance(a, sympy.ConditionSet):
return conditionset(*(a.args))
if raise_error:
raise SympifyError(("sympy2symengine: Cannot convert '%r' (of type %s)"
" to a symengine type.") % (a, type(a)))
def sympify(a):
"""
Converts an expression 'a' into a SymEngine type.
Arguments
=========
a ............. An expression to convert.
Examples
========
>>> from symengine import sympify
>>> sympify(1)
1
>>> sympify("a+b")
a + b
"""
if isinstance(a, str):
return c2py(symengine.parse(a.encode("utf-8")))
elif isinstance(a, tuple):
v = []
for e in a:
v.append(sympify(e))
return tuple(v)
elif isinstance(a, list):
v = []
for e in a:
v.append(sympify(e))
return v
return _sympify(a, True)
def _sympify(a, raise_error=True):
"""
Converts an expression 'a' into a SymEngine type.
Arguments
=========
a ............. An expression to convert.
raise_error ... Will raise an error on a failure (default True), otherwise
it returns None if 'a' cannot be converted.
Examples
========
>>> from symengine.li.symengine_wrapper import _sympify
>>> _sympify(1)
1
>>> _sympify("abc", False)
>>>
"""
if isinstance(a, (Basic, MatrixBase)):
return a
elif isinstance(a, bool):
return (true if a else false)
elif isinstance(a, numbers.Integral):
return Integer(a)
elif isinstance(a, float):
return RealDouble(a)
elif have_numpy and isinstance(a, (np.float16, np.float32)):
return RealDouble(a)
elif isinstance(a, complex):
return ComplexDouble(a)
elif hasattr(a, '_symengine_'):
return _sympify(a._symengine_(), raise_error)
elif hasattr(a, '_sympy_'):
return _sympify(a._sympy_(), raise_error)
elif hasattr(a, 'pyobject'):
return _sympify(a.pyobject(), raise_error)
try:
import sympy
return sympy2symengine(a, raise_error)
except ImportError:
pass
if raise_error:
raise SympifyError(
"sympify: Cannot convert '%r' (of type %s) to a symengine type." % (
a, type(a)))
funcs = {}
def get_function_class(function, module):
if not function in funcs:
funcs[function] = PyFunctionClass(function, module)
return funcs[function]
class Singleton(object):
__call__ = staticmethod(sympify)
@property
def Zero(self):
return zero
@property
def One(self):
return one
@property
def NegativeOne(self):
return minus_one
@property
def Half(self):
return half
@property
def Pi(self):
return pi
@property
def NaN(self):
return nan
@property
def Infinity(self):
return oo
@property
def NegativeInfinity(self):
return minus_oo
@property
def ComplexInfinity(self):
return zoo
@property
def Exp1(self):
return E
@property
def GoldenRatio(self):
return golden_ratio
@property
def Catalan(self):
return catalan
@property
def EulerGamma(self):
return eulergamma
@property
def ImaginaryUnit(self):
return I
@property
def true(self):
return true
@property
def false(self):
return false
@property
def EmptySet(self):
return empty_set_singleton
@property
def UniversalSet(self):
return universal_set_singleton
@property
def Integers(self):
return integers_singleton
@property
def Reals(self):
return reals_singleton
S = Singleton()
cdef class DictBasicIter(object):
cdef init(self, map_basic_basic.iterator begin, map_basic_basic.iterator end):
self.begin = begin
self.end = end
def __iter__(self):
return self
def __next__(self):
if self.begin != self.end:
obj = c2py(deref(self.begin).first)
else:
raise StopIteration
inc(self.begin)
return obj
cdef class _DictBasic(object):
def __init__(self, tocopy = None):
if tocopy != None:
self.add_dict(tocopy)
def as_dict(self):
ret = {}
it = self.c.begin()
while it != self.c.end():
ret[c2py(deref(it).first)] = c2py(deref(it).second)
inc(it)
return ret
def add_dict(self, d):
cdef _DictBasic D
if isinstance(d, DictBasic):
D = d
self.c.insert(D.c.begin(), D.c.end())
else:
for key, value in d.iteritems():
self.add(key, value)
def add(self, key, value):
cdef Basic K = sympify(key)
cdef Basic V = sympify(value)
cdef symengine.std_pair_rcp_const_basic_rcp_const_basic pair
pair.first = K.thisptr
pair.second = V.thisptr
return self.c.insert(pair).second
def copy(self):
return DictBasic(self)
__copy__ = copy
def __len__(self):
return self.c.size()
def __getitem__(self, key):
cdef Basic K = sympify(key)
it = self.c.find(K.thisptr)
if it == self.c.end():
raise KeyError(key)
else:
return c2py(deref(it).second)
def __setitem__(self, key, value):
cdef Basic K = sympify(key)
cdef Basic V = sympify(value)
self.c[K.thisptr] = V.thisptr
def clear(self):
self.clear()
def __delitem__(self, key):
cdef Basic K = sympify(key)
self.c.erase(K.thisptr)
def __contains__(self, key):
cdef Basic K = sympify(key)
it = self.c.find(K.thisptr)
return it != self.c.end()
def __iter__(self):
cdef DictBasicIter d = DictBasicIter()
d.init(self.c.begin(), self.c.end())
return d
class DictBasic(_DictBasic, MutableMapping):
def __str__(self):
return "{" + ", ".join(["%s: %s" % (str(key), str(value)) for key, value in self.items()]) + "}"
def __repr__(self):
return self.__str__()
def get_dict(*args):
"""
Returns a DictBasic instance from args. Inputs can be,
1. a DictBasic
2. a Python dictionary
3. two args old, new
"""
cdef _DictBasic D = DictBasic()
if len(args) == 2:
if is_sequence(args[0]):
for k, v in zip(args[0], args[1]):
D.add(k, v)
else:
D.add(args[0], args[1])
return D
elif len(args) == 1:
arg = args[0]
else:
raise TypeError("subs/msubs takes one or two arguments (%d given)" % \
len(args))
if isinstance(arg, DictBasic):
return arg
for k, v in arg.items():
D.add(k, v)
return D
cdef tuple vec_basic_to_tuple(symengine.vec_basic& vec):
return tuple(vec_basic_to_list(vec))
cdef list vec_basic_to_list(symengine.vec_basic& vec):
result = []
for i in range(vec.size()):
result.append(c2py(<rcp_const_basic>(vec[i])))
return result
cdef list vec_pair_to_list(symengine.vec_pair& vec):
result = []
cdef rcp_const_basic a, b
for i in range(vec.size()):
a = <rcp_const_basic>vec[i].first
b = <rcp_const_basic>vec[i].second
result.append((c2py(a), c2py(b)))
return result
repr_latex=[False]
cdef class Basic(object):
def __str__(self):
return deref(self.thisptr).__str__().decode("utf-8")
def __repr__(self):
return self.__str__()
def _repr_latex_(self):
if repr_latex[0]:
return "${}$".format(latex(self))
else:
return None
def __hash__(self):
return deref(self.thisptr).hash()
def __dealloc__(self):
self.thisptr.reset()
def _unsafe_reset(self):
self.thisptr.reset()
def __add__(a, b):
cdef Basic A = _sympify(a, False)
B_ = _sympify(b, False)
if A is None or B_ is None or isinstance(B_, MatrixBase): return NotImplemented
cdef Basic B = B_
return c2py(symengine.add(A.thisptr, B.thisptr))
def __sub__(a, b):
cdef Basic A = _sympify(a, False)
B_ = _sympify(b, False)
if A is None or B_ is None or isinstance(B_, MatrixBase): return NotImplemented
cdef Basic B = B_
return c2py(symengine.sub(A.thisptr, B.thisptr))
def __mul__(a, b):
cdef Basic A = _sympify(a, False)
B_ = _sympify(b, False)
if A is None or B_ is None or isinstance(B_, MatrixBase): return NotImplemented
cdef Basic B = B_
return c2py(symengine.mul(A.thisptr, B.thisptr))
def __truediv__(a, b):
cdef Basic A = _sympify(a, False)
cdef Basic B = _sympify(b, False)
if A is None or B is None: return NotImplemented
return c2py(symengine.div(A.thisptr, B.thisptr))
def __pow__(a, b, c):
if c is not None:
return powermod(a, b, c)
cdef Basic A = _sympify(a, False)
cdef Basic B = _sympify(b, False)
if A is None or B is None: return NotImplemented
return c2py(symengine.pow(A.thisptr, B.thisptr))
def __neg__(Basic self not None):
return c2py(symengine.neg(self.thisptr))
def __abs__(Basic self not None):
return c2py(symengine.abs(self.thisptr))
def __richcmp__(a, b, int op):
A = _sympify(a, False)
B = _sympify(b, False)
if not (isinstance(A, Basic) and isinstance(B, Basic)):
if (op == 2):
return False
elif (op == 3):
return True
else:
return NotImplemented
return Basic._richcmp_(A, B, op)
def _richcmp_(Basic A, Basic B, int op):
if (op == 2):
return symengine.eq(deref(A.thisptr), deref(B.thisptr))
elif (op == 3):
return symengine.neq(deref(A.thisptr), deref(B.thisptr))
if (op == 0):
return c2py(<rcp_const_basic>(symengine.Lt(A.thisptr, B.thisptr)))
elif (op == 1):
return c2py(<rcp_const_basic>(symengine.Le(A.thisptr, B.thisptr)))
elif (op == 4):
return c2py(<rcp_const_basic>(symengine.Gt(A.thisptr, B.thisptr)))
elif (op == 5):
return c2py(<rcp_const_basic>(symengine.Ge(A.thisptr, B.thisptr)))
def expand(Basic self not None, cppbool deep=True):
return c2py(symengine.expand(self.thisptr, deep))
def _diff(Basic self not None, Basic x):
return c2py(symengine.diff(self.thisptr, x.thisptr))
def diff(self, *args):
if len(args) == 0:
f = self.free_symbols
if (len(f) != 1):
raise RuntimeError("Variable w.r.t should be given")
return self._diff(f.pop())
return diff(self, *args)
def subs_dict(Basic self not None, *args):
warnings.warn("subs_dict() is deprecated. Use subs() instead", DeprecationWarning)
return self.subs(*args)
def subs_oldnew(Basic self not None, old, new):
warnings.warn("subs_oldnew() is deprecated. Use subs() instead", DeprecationWarning)
return self.subs({old: new})
def subs(Basic self not None, *args):
cdef _DictBasic D = get_dict(*args)
return c2py(symengine.ssubs(self.thisptr, D.c))
def xreplace(Basic self not None, *args):
cdef _DictBasic D = get_dict(*args)
return c2py(symengine.xreplace(self.thisptr, D.c))
replace = xreplace
def msubs(Basic self not None, *args):
cdef _DictBasic D = get_dict(*args)
return c2py(symengine.msubs(self.thisptr, D.c))
def as_numer_denom(Basic self not None):
cdef rcp_const_basic _num, _den
symengine.as_numer_denom(self.thisptr, symengine.outArg(_num), symengine.outArg(_den))
return c2py(<rcp_const_basic>_num), c2py(<rcp_const_basic>_den)
def as_real_imag(Basic self not None):
cdef rcp_const_basic _real, _imag
symengine.as_real_imag(self.thisptr, symengine.outArg(_real), symengine.outArg(_imag))
return c2py(<rcp_const_basic>_real), c2py(<rcp_const_basic>_imag)
def n(self, unsigned long prec = 53, real=None):
return evalf(self, prec, real)
evalf = n
@property
def args(self):
cdef symengine.vec_basic args = deref(self.thisptr).get_args()
return vec_basic_to_tuple(args)
@property
def free_symbols(self):
cdef symengine.set_basic _set = symengine.free_symbols(deref(self.thisptr))
return {c2py(<rcp_const_basic>(elem)) for elem in _set}
@property
def is_Atom(self):
return False
@property
def is_Symbol(self):
return False
@property
def is_symbol(self):
return False
@property
def is_Dummy(self):
return False
@property
def is_Function(self):
return False
@property
def is_Add(self):
return False
@property
def is_Mul(self):
return False