-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathexample_black_litterman.py
244 lines (212 loc) · 9.47 KB
/
example_black_litterman.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
from numpy import matrix, array, zeros, empty, sqrt, ones, dot, append, mean, cov, transpose, linspace
from numpy.linalg import inv, pinv
from pylab import *
from structures.quote import QuoteSeries
import scipy.optimize
import random
####################################
# Helper Functions
####################################
def load_data_net():
symbols = ['XOM', 'AAPL', 'MSFT', 'JNJ', 'GE', 'GOOG', 'CVX', 'PG', 'WFC']
cap = {'^GSPC':14.90e12, 'XOM':403.02e9, 'AAPL':392.90e9, 'MSFT':283.60e9, 'JNJ':243.17e9, 'GE':236.79e9, 'GOOG':292.72e9, 'CVX':231.03e9, 'PG':214.99e9, 'WFC':218.79e9}
n = len(symbols)
from datasources import yahoo
prices_out, caps_out = [], []
for s in symbols:
print("Reading symbol %s" % s)
q = yahoo.getquotesfromweb(s)
prices = q.getprices()[-500:]
prices_out.append(prices)
caps_out.append(cap[s])
return symbols, prices_out, caps_out
# Function loads historical stock prices of nine major S&P companies and returns them together
# with their market capitalizations, as of 2013-07-01
def load_data():
symbols = ['XOM', 'AAPL', 'MSFT', 'JNJ', 'GE', 'GOOG', 'CVX', 'PG', 'WFC']
cap = {'^GSPC':14.90e12, 'XOM':403.02e9, 'AAPL':392.90e9, 'MSFT':283.60e9, 'JNJ':243.17e9, 'GE':236.79e9, 'GOOG':292.72e9, 'CVX':231.03e9, 'PG':214.99e9, 'WFC':218.79e9}
n = len(symbols)
prices_out, caps_out = [], []
for s in symbols:
print("Reading symbol %s" % s)
q = QuoteSeries.loadfromfile(s, 'data/black_litterman/%s.csv' % s)
prices = q.getprices()[-500:]
prices_out.append(prices)
caps_out.append(cap[s])
return symbols, prices_out, caps_out
# Function takes historical stock prices together with market capitalizations and calculates
# names - array of assets' names
# prices - array of historical (daily) prices
# caps - array of assets' market capitalizations
# returns:
# names - array of assets' names
# weights - array of assets' weights (derived from mkt caps)
# expreturns - expected returns based on historical data
# covars - covariance matrix between assets based on historical data
def assets_meanvar(names, prices, caps):
prices = matrix(prices) # create numpy matrix from prices
weights = array(caps) / sum(caps) # create weights
# create matrix of historical returns
rows, cols = prices.shape
returns = empty([rows, cols-1])
for r in range(rows):
for c in range(cols-1):
p0, p1 = prices[r,c], prices[r,c+1]
returns[r,c] = (p1/p0)-1
# calculate expected returns
expreturns = array([])
for r in range(rows):
expreturns = append(expreturns, mean(returns[r]))
# calculate covariances
covars = cov(returns)
expreturns = (1+expreturns)**250-1 # Annualize expected returns
covars = covars * 250 # Annualize covariances
return names, weights, expreturns, covars
# rf risk free rate
# lmb lambda - risk aversion coefficient
# C assets covariance matrix
# V assets variances (diagonal in covariance matrix)
# W assets weights
# R assets returns
# mean portfolio historical return
# var portfolio historical variance
# Pi portfolio equilibrium excess returns
# tau scaling factor for Black-litterman
# Calculates portfolio mean return
def port_mean(W, R):
return sum(R*W)
# Calculates portfolio variance of returns
def port_var(W, C):
return dot(dot(W, C), W)
# Combination of the two functions above - mean and variance of returns calculation
def port_mean_var(W, R, C):
return port_mean(W, R), port_var(W, C)
# Given risk-free rate, assets returns and covariances, this function calculates
# mean-variance frontier and returns its [x,y] points in two arrays
def solve_frontier(R, C, rf):
def fitness(W, R, C, r):
# For given level of return r, find weights which minimizes
# portfolio variance.
mean, var = port_mean_var(W, R, C)
# Big penalty for not meeting stated portfolio return effectively serves as optimization constraint
penalty = 50*abs(mean-r)
return var + penalty
frontier_mean, frontier_var, frontier_weights = [], [], []
n = len(R) # Number of assets in the portfolio
for r in linspace(min(R), max(R), num=20): # Iterate through the range of returns on Y axis
W = ones([n])/n # start optimization with equal weights
b_ = [(0,1) for i in range(n)]
c_ = ({'type':'eq', 'fun': lambda W: sum(W)-1. })
optimized = scipy.optimize.minimize(fitness, W, (R, C, r), method='SLSQP', constraints=c_, bounds=b_)
if not optimized.success:
raise BaseException(optimized.message)
# add point to the min-var frontier [x,y] = [optimized.x, r]
frontier_mean.append(r) # return
frontier_var.append(port_var(optimized.x, C)) # min-variance based on optimized weights
frontier_weights.append(optimized.x)
return array(frontier_mean), array(frontier_var), frontier_weights
# Given risk-free rate, assets returns and covariances, this
# function calculates weights of tangency portfolio with respect to
# sharpe ratio maximization
def solve_weights(R, C, rf):
def fitness(W, R, C, rf):
mean, var = port_mean_var(W, R, C) # calculate mean/variance of the portfolio
util = (mean - rf) / sqrt(var) # utility = Sharpe ratio
return 1/util # maximize the utility, minimize its inverse value
n = len(R)
W = ones([n])/n # start optimization with equal weights
b_ = [(0.,1.) for i in range(n)] # weights for boundaries between 0%..100%. No leverage, no shorting
c_ = ({'type':'eq', 'fun': lambda W: sum(W)-1. }) # Sum of weights must be 100%
optimized = scipy.optimize.minimize(fitness, W, (R, C, rf), method='SLSQP', constraints=c_, bounds=b_)
if not optimized.success:
raise BaseException(optimized.message)
return optimized.x
def print_assets(names, W, R, C):
print("%-10s %6s %6s %6s %s" % ("Name", "Weight", "Return", "Dev", " Correlations"))
for i in range(len(names)):
print("%-10s %5.1f%% %5.1f%% %5.1f%% " % (names[i], 100*W[i], 100*R[i], 100*C[i,i]**.5), end='')
for j in range(i+1):
corr = C[i,j] / (sqrt(C[i,i]) * (sqrt(C[j,j]))) # calculate correlation from covariance
print("%.3f " % corr, end='')
print()
def optimize_and_display(title, names, R, C, rf, color='black'):
# optimize
W = solve_weights(R, C, rf)
mean, var = port_mean_var(W, R, C) # calculate tangency portfolio
f_mean, f_var, f_weights = solve_frontier(R, C, rf) # calculate min-var frontier
# display min-var frontier
print(title)
print_assets(names, W, R, C)
n = len(names)
scatter([C[i,i]**.5 for i in range(n)], R, marker='x',color=color) # draw assets
for i in range(n): # draw labels
text(C[i,i]**.5, R[i], ' %s'%names[i], verticalalignment='center', color=color)
scatter(var**.5, mean, marker='o', color=color) # draw tangency portfolio
plot(f_var**.5, f_mean, color=color) # draw min-var frontier
xlabel('$\sigma$'), ylabel('$r$')
grid(True)
# show()
# Display weights
#m = empty([n, len(f_weights)])
#for i in range(n):
# for j in range(m.shape[1]):
# m[i,j] = f_weights[j][i]
#stackplot(f_mean, m)
#show()
# given the pairs of assets, prepare the views and link matrices. This function is created just for users' convenience
def prepare_views_and_link_matrix(names, views):
r, c = len(views), len(names)
Q = [views[i][3] for i in range(r)] # view matrix
P = zeros([r, c]) # link matrix
nameToIndex = dict()
for i, n in enumerate(names):
nameToIndex[n] = i
for i, v in enumerate(views):
name1, name2 = views[i][0], views[i][2]
P[i, nameToIndex[name1]] = +1 if views[i][1]=='>' else -1
P[i, nameToIndex[name2]] = -1 if views[i][1]=='>' else +1
return array(Q), P
####################################
# Main
####################################
# Load names, prices, capitalizations from the data source(yahoo finance)
names, prices, caps = load_data()
n = len(names)
# Estimate assets's expected return and covariances
names, W, R, C = assets_meanvar(names, prices, caps)
rf = .015 # Risk-free rate
print("Historical Weights")
print_assets(names, W, R, C)
# Calculate portfolio historical return and variance
mean, var = port_mean_var(W, R, C)
# Mean-Variance Optimization (based on historical returns)
optimize_and_display('Optimization based on Historical returns', names, R, C, rf, color='red')
show()
# Black-litterman reverse optimization
lmb = (mean - rf) / var # Calculate return/risk trade-off
Pi = dot(dot(lmb, C), W) # Calculate equilibrium excess returns
# Mean-variance Optimization (based on equilibrium returns)
optimize_and_display('Optimization based on Equilibrium returns', names, Pi+rf, C, rf, color='green')
show()
# Determine views to the equilibrium returns and prepare views (Q) and link (P) matrices
views = [
('MSFT', '>', 'GE', 0.02),
('AAPL', '<', 'JNJ', 0.02)
]
Q, P = prepare_views_and_link_matrix(names, views)
print('Views Matrix')
print(Q)
print('Link Matrix')
print(P)
tau = .025 # scaling factor
# Calculate omega - uncertainty matrix about views
omega = dot(dot(dot(tau, P), C), transpose(P)) # 0.025 * P * C * transpose(P)
# Calculate equilibrium excess returns with views incorporated
sub_a = inv(dot(tau, C))
sub_b = dot(dot(transpose(P), inv(omega)), P)
sub_c = dot(inv(dot(tau, C)), Pi)
sub_d = dot(dot(transpose(P), inv(omega)), Q)
Pi = dot(inv(sub_a + sub_b), (sub_c + sub_d))
# Mean-variance Optimization (based on equilibrium returns)
optimize_and_display('Optimization based on Equilibrium returns with adjusted views', names, Pi+rf, C, rf, color='blue')
show()