-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
231 lines (181 loc) · 9.36 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import numpy as np
import config
from scipy.interpolate import interpn
import os
from sklearn.decomposition import PCA
#########################################################################################
# Functions reads Primo 3D dose file
# and returns doses in 3D dose array and a grid of coordinates.
# It is assumed that the dose was calculated over a grid with regular spacing
def readSimulatedDoseFile(name):
f = open(name,'r')
items = f.readlines()
f.close()
shapes = list(map(int,items[7].split()[1:]))
steps = list(map(float,items[9].split()[1:]))
#print(items[7].split())
#print(items[9].split())
N = shapes[0]
grid = (np.arange(steps[0]/2,shapes[0]*steps[0],steps[0]),np.arange(steps[1]/2,shapes[1]*steps[1],steps[1]),np.arange(steps[2]/2,shapes[2]*steps[2],steps[2]))
lines = [ l for l in items if not (l.startswith('#') or len(l)<5)]
#print(len(lines))
dose = np.zeros((N,N,N),dtype=np.float32)
for i,l in enumerate(lines):
z = i//(N*N)
y = (i-z*N*N)//N
x = i - z*N*N - y*N
dose[x,y,z] = float(l.split(' ')[0])
return grid,dose
#########################################################################################
#########################################################################################
# Function
def createProfiles(doseFileName):
grid,dose = readSimulatedDoseFile(doseFileName)
#interpolation grid
x = [s for s in np.arange(config.minSimulatedRange,config.minSimulatedRange + config.spaceStep/2.,config.spaceStep)]
pointsZ = [np.array([config.midPoint, config.midPoint, s]) for s in x]
profiles = [interpn(grid, dose, pointsZ)]
for d in config.profileDepths:
pointsX = [np.array([s, config.midPoint, d]) for s in x]
pointsY = [np.array([config.midPoint, s, d]) for s in x]
profiles.append((interpn(grid, dose, pointsX)+interpn(grid, dose, pointsY))/2)
MAX = 100
m = np.max(profiles[0])
for n,profile in enumerate(profiles):
profiles[n] = profile/m*MAX
return x,profiles
#########################################################################################
#Helper function
def createName(t,ext):
name = '_'.join(t) + ext
return name
#########################################################################################
#########################################################################################
# Read simulated 1D profiles from npz files
# For each data point in a points list a file with simulated profiles is read for three fields: 3x3, 10x10, and 30x30
# The simulations were run for 50x50x50cm water phantom with voxel size equal to 0.5x0.5x0.5cm
# The center of the first voxel is at (0.25,0.25,0.25) the last one is at (49.75,49.75,49.75)
# Each file contains six simulated profiles:
# 1. central depth profile dose[25,25,x]
# 2. five lateral profiles at depths in [1.4, 5, 10, 20, 30]cm
# Each lateral profile is an average over two perpendicular profiles i.e. it is equal to (dose[25,x,depth]+dose[x,25,depth])*0.5
# The profiles are interpolated at 0.1cm in the range from 0.3cm to 49.7cm, both ends included
#
# readProfiles returns a list 'profiles' of three arrays each of size (495,6):
# profiles[0] for 3x3 field, profiles[1] for 10x10 field, profiles[2] for 30x30 field,
def readProfiles(DIR, points):
profiles3 = []
profiles10 = []
profiles30 = []
for point in points:
name = DIR + createName(point+('3',),'.npz')
file = np.load(name)
profiles3.append(file[file.files[1]])
name = DIR + createName(point+('10',),'.npz')
file = np.load(name)
profiles10.append(file[file.files[1]])
name = DIR + createName(point+('30',),'.npz')
file = np.load(name)
profiles30.append(file[file.files[1]])
profiles30 = np.asarray(profiles30)
profiles10 = np.asarray(profiles10)
profiles3 = np.asarray(profiles3)
profiles = []
profiles.append(profiles3)
profiles.append(profiles10)
profiles.append(profiles30)
return profiles
#########################################################################################
# reads measured profiles from *.dat files
def readMeasuredDoseFile(name): #returns array of shape (N,4) - first three columns are coordinates and the last one is measured dose
f = open(name,'r')
items = f.readlines()
f.close()
lines = [ list(map(float,l.split(' ')[1:]))[0:4] for l in items if not (l.startswith('#') or len(l)<5)]
measuredDose = np.asarray(lines,dtype=np.float32)
return measuredDose
#########################################################################################
def allPCAResults():
dataPoints = [(str(e),str(se),str(s),str(an)) for e in config.simulatedEnergies for se in config.simulatedEnergyDispersions for s in config.simulatedSourceSizes
for an in config.simulatedAngularDivergences]
profiles = readProfiles(config.profileDIR,dataPoints)
means = []
for field in range(3):
means.append(np.mean(profiles[field],0))
diff = []
for field in range(3):
diff.append(profiles[field] - np.stack([means[field] for _ in range(profiles[field].shape[0])]))
fieldFeatures = []
fieldPCAModels = []
for field in range(3):
profilePCAModels = []
profileFeatures = []
for slice in range(diff[field].shape[1]):
pca = PCA(n_components=config.numbefOfPCAFeatures)
X = diff[field][:,slice,:]
pca.fit(X)
X_projected = pca.transform(X)
profileFeatures.append(X_projected)
profilePCAModels.append(pca)
fieldFeatures.append(profileFeatures)
fieldPCAModels.append(profilePCAModels)
return means,fieldFeatures,fieldPCAModels
##################################################################################
def reconstruct(xStart,allMeans,allFieldFeatures,allFieldPCAModels):
x0 = np.zeros((4,),dtype=np.float)
x0[0] = xStart[0]
x0[1] = 0.5
x0[2] = xStart[2]
x0[3] = xStart[3]
x0 = [p if p > c else c for (p,c) in zip(x0,config.minimum)]
x0 = [p if p < c else c for (p,c) in zip(x0,config.maximum)]
values = np.zeros((len(config.simulatedEnergies),len(config.simulatedEnergyDispersions),
len(config.simulatedSourceSizes),len(config.simulatedAngularDivergences),3),dtype=np.float)
reconstructed_profiles = []
for nfield,FIELD in enumerate(config.analyzedProfiles):
if FIELD != None:
for PROFILE in FIELD:
n = 0
for nE,E in enumerate(config.simulatedEnergies):
for nse,se in enumerate(config.simulatedEnergyDispersions):
for ns,s in enumerate(config.simulatedSourceSizes):
for na,a in enumerate(config.simulatedAngularDivergences):
np.copyto(values[nE,nse,ns,na,:],allFieldFeatures[nfield][PROFILE][n,:])
n = n+1
grid = (config.simulatedEnergies, config.simulatedEnergyDispersions, config.simulatedSourceSizes,config.simulatedAngularDivergences)
features = interpn(grid, values, x0)
X_Recon = allFieldPCAModels[nfield][PROFILE].inverse_transform(features)[0,:] + allMeans[nfield][PROFILE]
reconstructed_profiles.append(X_Recon)
return reconstructed_profiles
####################################################################################
def difference(xStart,clinicalProfiles,allMeans,allFieldFeatures,allFieldPCAModels):
x0 = np.zeros((4,),dtype=np.float)
x0[0] = xStart[0]
x0[1] = 0.5
x0[2] = xStart[2]
x0[3] = xStart[3]
x0 = [p if p > c else c for (p,c) in zip(x0,config.minimum)]
x0 = [p if p < c else c for (p,c) in zip(x0,config.maximum)]
values = np.zeros((len(config.simulatedEnergies),len(config.simulatedEnergyDispersions),
len(config.simulatedSourceSizes),len(config.simulatedAngularDivergences),3),dtype=np.float)
reconstructedProfiles = []
for nfield,FIELD in enumerate(config.analyzedProfiles):
if FIELD != None:
for PROFILE in FIELD:
n = 0
for nE,E in enumerate(config.simulatedEnergies):
for nse,se in enumerate(config.simulatedEnergyDispersions):
for ns,s in enumerate(config.simulatedSourceSizes):
for na,a in enumerate(config.simulatedAngularDivergences):
np.copyto(values[nE,nse,ns,na,:],allFieldFeatures[nfield][PROFILE][n,:])
n = n+1
grid = (config.simulatedEnergies, config.simulatedEnergyDispersions, config.simulatedSourceSizes,config.simulatedAngularDivergences)
features = interpn(grid, values, x0)
X_Recon = allFieldPCAModels[nfield][PROFILE].inverse_transform(features)[0,:] + allMeans[nfield][PROFILE]
reconstructedProfiles.append(X_Recon)
sum = 0.0
for n in range(len(clinicalProfiles)):
diff = np.sum((clinicalProfiles[n][config.allRanges[n][0]:config.allRanges[n][1]] - reconstructedProfiles[n][config.allRanges[n][0]:config.allRanges[n][1]])*
(clinicalProfiles[n][config.allRanges[n][0]:config.allRanges[n][1]] - reconstructedProfiles[n][config.allRanges[n][0]:config.allRanges[n][1]]))
sum = sum + diff
return sum