-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig_001.json
109 lines (83 loc) · 3.05 KB
/
config_001.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
{
"#": "---------------------------------------------------------------------",
"#": " ARCHITECTURE ",
"#": "---------------------------------------------------------------------",
"#": "type: non-saturating (default), wasserstein",
"#type": "non-saturating",
"type": "wasserstein",
"#type": "gradient_penalty",
"gp_weight": 0.1,
"layer_norm": false,
"au_weight": 1,
"lat_weight": 1,
"#": "Number of layers for D and G",
"d_layers": 3,
"g_layers": 4,
"#": "Number of neurons by layer for D and G",
"d_dim": 400,
"g_dim": 400,
"#": "Number of dimension of the latent variable",
"z_dim": 8,
"#": "Clamp (only used in wasserstein mode)",
"clamp_lower": -0.01,
"clamp_upper": 0.01,
"#": "---------------------------------------------------------------------",
"#": " OPTIMISER ",
"#": "---------------------------------------------------------------------",
"#": "optimiser: adam RMSprop",
"optimiser": "RMSprop",
"#optimiser": "adam",
"#": "optimiser: shuffle all batch ?",
"shuffle": false,
"#": "adam optimiser: regularisation L2 (for adam only) ; zero if no regul",
"d_weight_decay": 0,
"g_weight_decay": 0,
"#": "adam optimiser: beta",
"beta_1": "0.9",
"beta_2": "0.99",
"#": "optimiser: learning rate",
"d_learning_rate": 1e-5,
"g_learning_rate": 1e-5,
"#": "optimiser: number of D and G update by epoch",
"d_nb_update": 2,
"g_nb_update": 1,
"#": "optimiser: max nb of epoch (iteration)",
"epoch": 550000,
"plot_every_epoch": 400,
"validation_every_epoch": 400,
"#":"data for training",
"validation_filename": "None",
"start_pth":"None",
"training_filename":"/net/scratch/people/plgztabor/primo_workdir/Generators/CGAN/Archiwum/hdf5/photons_without_anihilation.hd5",
"model_name":"model.pth",
"params_name":"params.pkl",
"normalization_data_file":"/net/scratch/people/plgztabor/primo_workdir/Generators/CGAN/Archiwum/hdf5/normalizacja.dat",
"start date":0.0,
"#": "optimiser: nb of samples by batch",
"batch_size": 10000,
"#": "Smooth fake/real labels instead of zero/one",
"#label_smoothing": 0.2,
"leaky_relu":true,
"#": "---------------------------------------------------------------------",
"#": " DATA ",
"#": "---------------------------------------------------------------------",
"constraints": {
"Ekine": [0,6],
"X": [-200,200],
"Y": [-200,200],
"dX": [-1,1],
"dY": [-1,1],
"dZ": [0,1]
},
"keys": "Ekine X Y dX dY dZ E s a",
"cond_keys": "E s a",
"#": "---------------------------------------------------------------------",
"#": " GENERAL ",
"#": "---------------------------------------------------------------------",
"#": "gpu_mode: true false auto",
"gpu_mode": "auto",
"#": "save Generator and info every epoch",
"dump_epoch_start": 0,
"dump_epoch_every": 5000,
"dump_last_n_epoch": 0
}