Skip to content

Latest commit

 

History

History
78 lines (39 loc) · 2.35 KB

README.md

File metadata and controls

78 lines (39 loc) · 2.35 KB

First attempt writing a neural network, using the MNIST dataset, to detect handwritten numbers.

I read the first two chapters of neuralnetworksanddeeplearning.com then attempted the MNIST challenge myself using the notes I took from the book.

src/mnist_loader.py is a direct copy from from neuralnetworksanddeeplearning.com

conda env

Name Version Build

atomicwrites 1.2.1 py27_0

attrs 18.2.0 py27h28b3542_0

blas 1.0 mkl

ca-certificates 2018.03.07 0

certifi 2018.10.15 py27_0

funcsigs 1.0.2 py27hb9f6266_0

intel-openmp 2019.1 144

libcxx 4.0.1 hcfea43d_1

libcxxabi 4.0.1 hcfea43d_1

libedit 3.1.20170329 hb402a30_2

libffi 3.2.1 h475c297_4

libgfortran 3.0.1 h93005f0_2

mkl 2018.0.3 1

mkl_fft 1.0.6 py27hb8a8100_0

mkl_random 1.0.1 py27h5d10147_1

more-itertools 4.3.0 py27_0

ncurses 6.1 h0a44026_0

numpy 1.15.4 py27h6a91979_0

numpy-base 1.15.4 py27h8a80b8c_0

openssl 1.1.1a h1de35cc_0

pathlib2 2.3.2 py27_0

pip 18.1 py27_0

pluggy 0.8.0 py27_0

py 1.7.0 py27_0

pytest 4.0.1 py27_0

python 2.7.15 h8f8e585_4

readline 7.0 h1de35cc_5

scandir 1.9.0 py27h1de35cc_0

setuptools 40.6.2 py27_0

six 1.11.0 py27_1

sqlite 3.25.3 ha441bb4_0

tk 8.6.8 ha441bb4_0

wheel 0.32.3 py27_0

zlib 1.2.11 h1de35cc_3