-
Notifications
You must be signed in to change notification settings - Fork 2
/
Lane_detection_Probolistic_hough.py
122 lines (87 loc) · 3.94 KB
/
Lane_detection_Probolistic_hough.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
"""
Spyder Editor
Tanay - 7 April 2017.
"""
import math
import cv2
import numpy as np
"-----------------------------------------------------------------------------"
"-------------------- Automatic Threshold Detector for Canny------------------"
"-----------------------------------------------------------------------------"
# Automatic Image thresholds for the Canny Edge detector
def autocanny(image, sigma=0.33):
#Computing the median of the image
#v = np.median(image)
v = 0.9*np.amax(image)
# Selection of the lower and Upper thresholds
lower = int(max(0, (1.0 - sigma)*v)) + 0
upper = int(min(255, (1.0 +sigma)*v)) + 0
edged = cv2.Canny(image, lower, upper)
# Return the Edge Image
return edged
"-----------------------------------------------------------------------------"
"------------------------- Color Selection -----------------------------------"
"-----------------------------------------------------------------------------"
def color_selection(image):
# Input is the image from camera
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# The calibration values
H_low = 0
S_low = 0
V_low = 0
H_high = 255
S_high = 25
V_high = 81
# Create a boundry for the color selection
lower = np.array([H_low,S_low,V_low])
upper = np.array([H_high,S_high,V_high])
# find the colors within the specified boundaries and apply the mask
mask = cv2.inRange(image, lower, upper)
output = cv2.bitwise_and(image, image, mask=mask)
# Return HSV filtered image
return output
"-----------------------------------------------------------------------------"
"-------------------------- Hough Transform - Simple -------------------------"
"-----------------------------------------------------------------------------"
def houghtransform_simple(edge, image, threshold, minLineLength, maxLineGap):
# Hough Lines
lines = cv2.HoughLinesP(edge,1,np.pi/180,threshold,minLineLength,maxLineGap)
# Copy of the original Image
image_cp = image.copy()
if lines is not None:
for x1,y1,x2,y2 in lines[0]:
cv2.line(image_cp,(x1,y1),(x2,y2),(0,255,0),2)
return(image_cp, 0)
else:
print("No Lines")
return (image_cp, None)
"-----------------------------------------------------------------------------"
"-------------------- The start of the program -------------------------------"
"-----------------------------------------------------------------------------"
# Read the image
def lane_detection(image):
if image is None: raise ValueError("no image given to mark_lanes")
"------------------------- Color Selection --------------------------------"
selection_image = color_selection(image)
"------------------------- Smoothning of the image ------------------------"
# Gaussian smoothing
kernel_size = 5
blur_gray = cv2.GaussianBlur(selection_image,(kernel_size, kernel_size), 0)
"------------------------- Gradient Image ------------------------"
laplacianx64f = cv2.Laplacian(blur_gray,cv2.CV_64F)
abs_laplacianx64f = np.absolute(laplacianx64f)
laplacian_8u = np.uint8(abs_laplacianx64f)
"------------------------- Canny Edge Detection ---------------------------"
# Define our parameters for Canny and apply
edges_img = autocanny(np.uint8(laplacian_8u))
"------------------------- Smoothning of the image ------------------------"
# Gaussian smoothing
kernel_size = 5
edges_img = cv2.GaussianBlur(edges_img,(kernel_size, kernel_size), 0)
"------------------------- Hough Transform ------------------------------------"
threshold = 30
minLineLength = 5
maxLineGap = 5
(line_image, steering) = houghtransform_simple(edges_img, image, threshold, minLineLength, maxLineGap)
# Return the value of steering
return (line_image, steering)