diff --git a/Backend/Dharun/face-detect-mtcnn b/Backend/Dharun/face-detect-mtcnn new file mode 100644 index 0000000..8728f1b --- /dev/null +++ b/Backend/Dharun/face-detect-mtcnn @@ -0,0 +1,36 @@ +# Step 2: Face Detection with MTCNN +import cv2 +from mtcnn import MTCNN + +# Initialize the MTCNN face detector +detector = MTCNN() + +def detect_faces(frame): + # Detect faces in the frame + faces = detector.detect_faces(frame) + for face in faces: + # Extract bounding box coordinates + x, y, width, height = face['box'] + # Draw bounding box around each detected face + cv2.rectangle(frame, (x, y), (x + width, y + height), (255, 0, 0), 2) + return frame + +def capture_video_with_face_detection(): + cap = cv2.VideoCapture(0) + while True: + ret, frame = cap.read() + if not ret: + break + + # Detect faces in the current frame + frame_with_faces = detect_faces(frame) + cv2.imshow('Face Detection', frame_with_faces) + + if cv2.waitKey(1) & 0xFF == ord('q'): + break + + cap.release() + cv2.destroyAllWindows() + +# Run face detection with video capture +capture_video_with_face_detection()