-
Notifications
You must be signed in to change notification settings - Fork 8
/
util.py
229 lines (177 loc) · 7.42 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import cv2
import random
import math
import argparse
import torch
from torch.utils import data
from torch.nn import functional as F
from torch import autograd
from torch.nn import init
import torchvision.transforms as transforms
from model.stylegan.op import conv2d_gradfix
from model.encoder.encoders.psp_encoders import GradualStyleEncoder
from model.encoder.align_all_parallel import get_landmark
def visualize(img_arr, dpi):
plt.figure(figsize=(10,10),dpi=dpi)
plt.imshow(((img_arr.detach().cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8))
plt.axis('off')
plt.show()
def save_image(img, filename):
tmp = ((img.detach().cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8)
cv2.imwrite(filename, cv2.cvtColor(tmp, cv2.COLOR_RGB2BGR))
def load_image(filename):
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]),
])
img = Image.open(filename)
img = transform(img)
return img.unsqueeze(dim=0)
def data_sampler(dataset, shuffle, distributed):
if distributed:
return data.distributed.DistributedSampler(dataset, shuffle=shuffle)
if shuffle:
return data.RandomSampler(dataset)
else:
return data.SequentialSampler(dataset)
def requires_grad(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
def accumulate(model1, model2, decay=0.999):
par1 = dict(model1.named_parameters())
par2 = dict(model2.named_parameters())
for k in par1.keys():
par1[k].data.mul_(decay).add_(par2[k].data, alpha=1 - decay)
def sample_data(loader):
while True:
for batch in loader:
yield batch
def d_logistic_loss(real_pred, fake_pred):
real_loss = F.softplus(-real_pred)
fake_loss = F.softplus(fake_pred)
return real_loss.mean() + fake_loss.mean()
def d_r1_loss(real_pred, real_img):
with conv2d_gradfix.no_weight_gradients():
grad_real, = autograd.grad(
outputs=real_pred.sum(), inputs=real_img, create_graph=True
)
grad_penalty = grad_real.pow(2).reshape(grad_real.shape[0], -1).sum(1).mean()
return grad_penalty
def g_nonsaturating_loss(fake_pred):
loss = F.softplus(-fake_pred).mean()
return loss
def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01):
noise = torch.randn_like(fake_img) / math.sqrt(
fake_img.shape[2] * fake_img.shape[3]
)
grad, = autograd.grad(
outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True
)
path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1))
path_mean = mean_path_length + decay * (path_lengths.mean() - mean_path_length)
path_penalty = (path_lengths - path_mean).pow(2).mean()
return path_penalty, path_mean.detach(), path_lengths
def make_noise(batch, latent_dim, n_noise, device):
if n_noise == 1:
return torch.randn(batch, latent_dim, device=device)
noises = torch.randn(n_noise, batch, latent_dim, device=device).unbind(0)
return noises
def mixing_noise(batch, latent_dim, prob, device):
if prob > 0 and random.random() < prob:
return make_noise(batch, latent_dim, 2, device)
else:
return [make_noise(batch, latent_dim, 1, device)]
def set_grad_none(model, targets):
for n, p in model.named_parameters():
if n in targets:
p.grad = None
def weights_init(m):
classname = m.__class__.__name__
if classname.find('BatchNorm2d') != -1:
if hasattr(m, 'weight') and m.weight is not None:
init.normal_(m.weight.data, 1.0, 0.02)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
def load_psp_standalone(checkpoint_path, device='cuda'):
ckpt = torch.load(checkpoint_path, map_location='cpu')
opts = ckpt['opts']
if 'output_size' not in opts:
opts['output_size'] = 1024
opts['n_styles'] = int(math.log(opts['output_size'], 2)) * 2 - 2
opts = argparse.Namespace(**opts)
psp = GradualStyleEncoder(50, 'ir_se', opts)
psp_dict = {k.replace('encoder.', ''): v for k, v in ckpt['state_dict'].items() if k.startswith('encoder.')}
psp.load_state_dict(psp_dict)
psp.eval()
psp = psp.to(device)
latent_avg = ckpt['latent_avg'].to(device)
def add_latent_avg(model, inputs, outputs):
return outputs + latent_avg.repeat(outputs.shape[0], 1, 1)
psp.register_forward_hook(add_latent_avg)
return psp
def get_video_crop_parameter(filepath, predictor, padding=[200,200,200,200]):
if type(filepath) == str:
img = dlib.load_rgb_image(filepath)
else:
img = filepath
lm = get_landmark(img, predictor)
if lm is None:
return None
lm_chin = lm[0 : 17] # left-right
lm_eyebrow_left = lm[17 : 22] # left-right
lm_eyebrow_right = lm[22 : 27] # left-right
lm_nose = lm[27 : 31] # top-down
lm_nostrils = lm[31 : 36] # top-down
lm_eye_left = lm[36 : 42] # left-clockwise
lm_eye_right = lm[42 : 48] # left-clockwise
lm_mouth_outer = lm[48 : 60] # left-clockwise
lm_mouth_inner = lm[60 : 68] # left-clockwise
scale = 64. / (np.mean(lm_eye_right[:,0])-np.mean(lm_eye_left[:,0]))
center = ((np.mean(lm_eye_right, axis=0)+np.mean(lm_eye_left, axis=0)) / 2) * scale
h, w = round(img.shape[0] * scale), round(img.shape[1] * scale)
left = max(round(center[0] - padding[0]), 0) // 8 * 8
right = min(round(center[0] + padding[1]), w) // 8 * 8
top = max(round(center[1] - padding[2]), 0) // 8 * 8
bottom = min(round(center[1] + padding[3]), h) // 8 * 8
return h,w,top,bottom,left,right,scale
def tensor2cv2(img):
tmp = ((img.cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8)
return cv2.cvtColor(tmp, cv2.COLOR_RGB2BGR)
# get parameters from the stylegan and mark them with their layers
def gather_params(G):
params = dict(
[(res, {}) for res in range(18)] + [("others", {})]
)
for n, p in sorted(list(G.named_buffers()) + list(G.named_parameters())):
if n.startswith("convs"):
layer = int(n.split(".")[1]) + 1
params[layer][n] = p
elif n.startswith("to_rgbs"):
layer = int(n.split(".")[1]) * 2 + 3
params[layer][n] = p
elif n.startswith("conv1"):
params[0][n] = p
elif n.startswith("to_rgb1"):
params[1][n] = p
else:
params["others"][n] = p
return params
# blend the ffhq stylegan model and the finetuned model for toonify
# see ``Resolution Dependent GAN Interpolation for Controllable Image Synthesis Between Domains''
def blend_models(G_low, G_high, weight=[1]*7+[0]*11):
params_low = gather_params(G_low)
params_high = gather_params(G_high)
for res in range(18):
for n, p in params_high[res].items():
params_high[res][n] = params_high[res][n] * (1-weight[res]) + params_low[res][n] * weight[res]
state_dict = {}
for _, p in params_high.items():
state_dict.update(p)
return state_dict