-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path10080 bipartite graph maximum matching.cpp
94 lines (88 loc) · 2.23 KB
/
10080 bipartite graph maximum matching.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#include<bits/stdc++.h>
#define N 200005
#define ll long long
#define pare pair<int,int>
using namespace std;
int ct,cases,n,m,s,v;
///dir array for Queen int dxq[10] = {-1,-1,-1,1,1,1,0,0};
///dir array for Queen int dyq[10] = {-1,0,1,-1,0,1,-1,1};
///dir array for knight int dxk[10] = {-2,-2,-1,-1,1,1,2,2};
///dir array for knight int dyk[10] = {1,-1,-2,2,-2,2,-1,1};
/*int leap(int a){
if(a%4==0){
if(a%100==0){
if(a%400==0){
return 1;
}
else{
return 0;
}
}
else{
return 1;
}
}
else{
return 0;
}
}*/
vector<int>graph[105];
int L[105],R[105];
int vis[105];
bool tryk(int s){
if(vis[s] == 1)return false;
vis[s] = 1;
int i,j,k;
for(i=0;i<graph[s].size();i++){
int v = graph[s][i];
if(R[v]==-1 || tryk(R[v])){
L[s] = v;
R[v] = s;
return true;
}
}
return false;
}
int kuhn(){
int i,j,k,res=0;
memset(L,-1,sizeof L);
memset(R,-1,sizeof R);
for(i=0;i<n;i++){
memset(vis,0,sizeof vis);
if(tryk(i)){
res++;
}
}
return res;
}
double distance(double x1 ,double y1 ,double x2, double y2){
//printf("%lf\n",sqrt(((x2-x1)*(x2-x1))-((y2-y1)*(y2-y1))));
return sqrt(((x2-x1)*(x2-x1))+((y2-y1)*(y2-y1)));
}
int main(){
//freopen("input.txt","r",stdin);
//freopen("output.txt","w",stdout);
while(scanf("%d %d %d %d",&n,&m,&s,&v)!=EOF){
int i,j,k;
double gx[105],gy[105],holex[105],holey[105];
for(i=0;i<n;i++){
scanf("%lf %lf",&gx[i],&gy[i]);
}
for(i=0;i<m;i++){
scanf("%lf %lf",&holex[i],&holey[i]);
}
for(i=0;i<n;i++){
for(j=0;j<m;j++){
if((distance(gx[i],gy[i],holex[j],holey[j])/(double)v) <= s){
graph[i].push_back(j);
}
}
}
int maxres=kuhn();
//printf("max = %d\n and n = %d\n",maxres,n);
printf("%d\n",n-maxres);
for(i=0;i<=m;i++){
graph[i].clear();
}
}
}