-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_attack.py
93 lines (69 loc) · 2.69 KB
/
run_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
"""Evaluates a model against examples from a .npy file as specified
in config.json"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import json
import math
import os
import sys
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
from model import Model
def run_attack(checkpoint, x_adv, epsilon):
mnist = input_data.read_data_sets('MNIST_data', one_hot=False)
model = Model()
saver = tf.train.Saver()
num_eval_examples = 10000
eval_batch_size = 64
num_batches = int(math.ceil(num_eval_examples / eval_batch_size))
total_corr = 0
x_nat = mnist.test.images
l_inf = np.amax(np.abs(x_nat - x_adv))
if l_inf > epsilon + 0.0001:
print('maximum perturbation found: {}'.format(l_inf))
print('maximum perturbation allowed: {}'.format(epsilon))
return
y_pred = [] # label accumulator
with tf.Session() as sess:
# Restore the checkpoint
saver.restore(sess, checkpoint)
# Iterate over the samples batch-by-batch
for ibatch in range(num_batches):
bstart = ibatch * eval_batch_size
bend = min(bstart + eval_batch_size, num_eval_examples)
x_batch = x_adv[bstart:bend, :]
y_batch = mnist.test.labels[bstart:bend]
dict_adv = {model.x_input: x_batch,
model.y_input: y_batch}
cur_corr, y_pred_batch = sess.run([model.num_correct, model.y_pred],
feed_dict=dict_adv)
total_corr += cur_corr
y_pred.append(y_pred_batch)
accuracy = total_corr / num_eval_examples
print('Accuracy: {:.2f}%'.format(100.0 * accuracy))
y_pred = np.concatenate(y_pred, axis=0)
np.save('pred.npy', y_pred)
print('Output saved at pred.npy')
if __name__ == '__main__':
import json
with open('config.json') as config_file:
config = json.load(config_file)
model_dir = config['model_dir']
checkpoint = tf.train.latest_checkpoint(model_dir)
x_adv = np.load(config['store_adv_path'])
if checkpoint is None:
print('No checkpoint found')
elif x_adv.shape != (10000, 784):
print('Invalid shape: expected (10000,784), found {}'.format(x_adv.shape))
elif np.amax(x_adv) > 1.0001 or \
np.amin(x_adv) < -0.0001 or \
np.isnan(np.amax(x_adv)):
print('Invalid pixel range. Expected [0, 1], found [{}, {}]'.format(
np.amin(x_adv),
np.amax(x_adv)))
else:
run_attack(checkpoint, x_adv, config['epsilon'])