-
Notifications
You must be signed in to change notification settings - Fork 4
/
model_defs.py
302 lines (265 loc) · 10.3 KB
/
model_defs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
## Copyright (C) 2019, Huan Zhang <[email protected]>
## Hongge Chen <[email protected]>
## Chaowei Xiao <[email protected]>
##
## This program is licenced under the BSD 2-Clause License,
## contained in the LICENCE file in this directory.
##
# from convex_adversarial import Dense, DenseSequential
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
import argparse
import numpy as np
import collections
class Flatten(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
# MLP model, each layer has the same number of neuron
# parameter in_dim: input image dimension, 784 for MNIST and 1024 for CIFAR
# parameter layer: number of layers
# parameter neuron: number of neurons per layer
def model_mlp_uniform(in_dim, layer, neurons, out_dim = 10):
assert layer >= 2
neurons = [neurons] * (layer - 1)
return model_mlp_any(in_dim, neurons, out_dim)
# MLP model, each layer has the different number of neurons
# parameter in_dim: input image dimension, 784 for MNIST and 1024 for CIFAR
# parameter neurons: a list of neurons for each layer
def model_mlp_any(in_dim, neurons, out_dim = 10):
assert len(neurons) >= 1
# input layer
units = [Flatten(), nn.Linear(in_dim, neurons[0])]
prev = neurons[0]
# intermediate layers
for n in neurons[1:]:
units.append(nn.ReLU())
units.append(nn.Linear(prev, n))
prev = n
# output layer
units.append(nn.ReLU())
units.append(nn.Linear(neurons[-1], out_dim))
#print(units)
return nn.Sequential(*units)
def model_cnn_1layer(in_ch, in_dim, width):
model = nn.Sequential(
nn.Conv2d(in_ch, 8*width, 4, stride=4),
nn.ReLU(),
Flatten(),
nn.Linear(8*width*(in_dim // 4)*(in_dim // 4),10),
)
return model
# CNN, small 2-layer (kernel size fixed to 4) TODO: use other kernel size
# parameter in_ch: input image channel, 1 for MNIST and 3 for CIFAR
# parameter in_dim: input dimension, 28 for MNIST and 32 for CIFAR
# parameter width: width multiplier
def model_cnn_2layer(in_ch, in_dim, width, linear_size=128):
model = nn.Sequential(
nn.Conv2d(in_ch, 4*width, 4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(4*width, 8*width, 4, stride=2, padding=1),
nn.ReLU(),
Flatten(),
nn.Linear(8*width*(in_dim // 4)*(in_dim // 4),linear_size),
nn.ReLU(),
nn.Linear(linear_size, 10)
)
return model
# CNN, relatively small 3-layer
# parameter in_ch: input image channel, 1 for MNIST and 3 for CIFAR
# parameter in_dim: input dimension, 28 for MNIST and 32 for CIFAR
# parameter kernel_size: convolution kernel size, 3 or 5
# parameter width: width multiplier
def model_cnn_3layer_fixed(in_ch, in_dim, kernel_size, width, linear_size = None):
if linear_size is None:
linear_size = width * 64
if kernel_size == 5:
h = (in_dim - 4) // 4
elif kernel_size == 3:
h = in_dim // 4
else:
raise ValueError("Unsupported kernel size")
model = nn.Sequential(
nn.Conv2d(in_ch, 4*width, kernel_size=kernel_size, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(4*width, 8*width, kernel_size=kernel_size, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(8*width, 8*width, kernel_size=4, stride=4, padding=0),
nn.ReLU(),
Flatten(),
nn.Linear(8*width*h*h, linear_size),
nn.ReLU(),
nn.Linear(linear_size, 10)
)
return model
# CNN, relatively large 4-layer
# parameter in_ch: input image channel, 1 for MNIST and 3 for CIFAR
# parameter in_dim: input dimension, 28 for MNIST and 32 for CIFAR
# parameter width: width multiplier
# TODO: the model we used before is equvalent to width=8, TOO LARGE!
# TODO: use different kernel size in this model
def model_cnn_4layer(in_ch, in_dim, width, linear_size):
model = nn.Sequential(
nn.Conv2d(in_ch, 4*width, 3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(4*width, 4*width, 4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(4*width, 8*width, 3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(8*width, 8*width, 4, stride=2, padding=1),
nn.ReLU(),
Flatten(),
nn.Linear(8*width*(in_dim // 4)*(in_dim // 4),linear_size),
nn.ReLU(),
nn.Linear(linear_size,linear_size),
nn.ReLU(),
nn.Linear(linear_size,10)
)
return model
def model_cnn_10layer(in_ch, in_dim, width):
model = nn.Sequential(
# input 32*32*3
nn.Conv2d(in_ch, 4*width, 3, stride=1, padding=1),
nn.ReLU(),
# input 32*32*4
nn.Conv2d(4*width, 8*width, 2, stride=2, padding=0),
nn.ReLU(),
# input 16*16*8
nn.Conv2d(8*width, 8*width, 3, stride=1, padding=1),
nn.ReLU(),
# input 16*16*8
nn.Conv2d(8*width, 16*width, 2, stride=2, padding=0),
nn.ReLU(),
# input 8*8*16
nn.Conv2d(16*width, 16*width, 3, stride=1, padding=1),
nn.ReLU(),
# input 8*8*16
nn.Conv2d(16*width, 32*width, 2, stride=2, padding=0),
nn.ReLU(),
# input 4*4*32
nn.Conv2d(32*width, 32*width, 3, stride=1, padding=1),
nn.ReLU(),
# input 4*4*32
nn.Conv2d(32*width, 64*width, 2, stride=2, padding=0),
nn.ReLU(),
# input 2*2*64
Flatten(),
nn.Linear(2*2*64*width,10)
)
return model
# below are utilities for model converters, not used during training
class DenseConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros'):
# super(nn.Conv2d, self).__init__( in_channels, out_channels, kernel_size, stride=1,padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')
super(DenseConv2d, self).__init__()
self.weight = Parameter(torch.randn(out_channels, in_channels//groups, *kernel_size) )
if bias is not None:
self.bias = Parameter(torch.zeros(out_channels))
else:
self.bias = None
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = 1
def Denseforward(self, inputs):
b, n, w, h = inputs.shape
kernel = self.weight
bias = self.bias
I = torch.eye(n*w*h).view(n*w*h, n, w, h)
W = F.conv2d(I, kernel, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)
input_flat = inputs.view(b, -1)
b1, n1, w1, h1 = W.shape
out = torch.matmul(input_flat, W.view(b1, -1)).view(b, n1, w1, h1)
new_bias = bias.view(1,n1,1,1).repeat(1,1,w1,h1)
if type(bias) != type(True):
# out2 = out + bias.view(1, n1, 1, 1)
out2 = out + new_bias
else:
out2 = out
self.dense_w = W.view(b1,-1).transpose(1,0)
self.dense_bias = new_bias.view(-1)
# print( ((gt - out2) **2).sum())
# torch.matmul(input_flat, W.view(n*w*h, -1)).view(b, )
return out2
def forward(self, input):
# out = F.conv2d(input, self.weight,self.bias, self.stride,
# self.padding, self.dilation, self.groups)
out = self.Denseforward(input)
return out
def convert_conv2d_dense(model):
layers = list(model.children())
new_model = model.__class__()
new_layers = []
# for name, layer in model.named_modules():
for layer in layers:
if isinstance(layer, nn.Conv2d):
new_layer = DenseConv2d(layer.in_channels, layer.out_channels, layer.kernel_size, stride=layer.stride, padding=layer.padding, dilation=layer.dilation, groups=layer.groups, bias=layer.bias)
new_layer.weight = layer.weight
new_layer.bias = layer.bias
else:
new_layer = layer
# new_model.add_module(name, new_layer)
# print(name, layer)
new_layers.append(new_layer)
return new_model.__class__(*new_layers)
def save_checkpoint(model, checkpoint_fname):
layers = list(model.children())
# for name, layer in model.named_modules():
count = 0
save_dict = {}
for layer in layers:
if isinstance(layer, DenseConv2d):
save_dict["{}.weight".format(count+1)] = layer.dense_w
save_dict["{}.bias".format(count+1)] = layer.dense_bias
elif isinstance(layer, nn.Linear):
save_dict["{}.weight".format(count)] = layer.weight
save_dict["{}.bias".format(count)] = layer.bias
count+=1
save_dict = collections.OrderedDict(save_dict)
torch.save({"state_dict" : save_dict}, checkpoint_fname)
return save_dict
def load_checkpoint_to_mlpany(dense_checkpoint_file):
checkpoint = torch.load(dense_checkpoint_file)["state_dict"]
neurons=[]
first = True
for key in checkpoint:
if key.endswith("weight"):
h,w = checkpoint[key].shape
if first:
neurons.append(w)
first=False
print( h, w)
neurons.append(h)
print(neurons)
neuron_list = " ".join([str(n) for n in neurons])
print("python converter/torch2keras.py -i {} -o {} --flatten {}".format(dense_checkpoint_file, dense_checkpoint_file.replace(".pth", ".h5"), neuron_list))
# align name
model = model_mlp_any(neurons[0], neurons[1:-1], out_dim = neurons[-1])
mlp_state = model.state_dict()
# for key in mlp_state:
# print( mlp_state[key].shape )
# print( checkpoint[key].shape)
model.load_state_dict(checkpoint)
return model
if __name__ == "__main__":
# model = model_cnn_2layer(3, 32, 1)
# print(model)
# sub_model = add_feature_subsample(model, 3, 32, 0.5)
# print(sub_model)
checkpoint_fname = "mnist/cnn_2layer_width_1.pth"
model = model_cnn_2layer(1, 28, 1)
# print(model)
input = torch.zeros(1, 1, 28 ,28 )
x = model(input)
model = convert_conv2d_dense(model)
x2 = model(input)
save_checkpoint(model, checkpoint_fname.split(".pth")[0] + "_dense.pth")
print(x2)
checkpoint_fname = "mnist/cnn_2layer_width_1_dense.pth"
checkpoint = torch.load(checkpoint_fname)["state_dict"]
load_checkpoint_to_mlpany(checkpoint)
# model_mlp_any(784, neurons, out_dim = 10)
x3 = model(input)
print(x)