-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathelasto-plasticity_even.py
256 lines (214 loc) · 10.1 KB
/
elasto-plasticity_even.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import numpy as np
import scipy.sparse.linalg as sp
import itertools
# turn of warning for zero division
# (which occurs in the linearization of the logarithmic strain)
np.seterr(divide='ignore', invalid='ignore')
# ----------------------------------- GRID ------------------------------------
Nx = 10 # number of voxels in x-direction
Ny = 12 # number of voxels in y-direction
Nz = 14 # number of voxels in z-direction
shape = [Nx,Ny,Nz] # number of voxels as list: [Nx,Ny,Nz]
# ----------------------------- TENSOR OPERATIONS -----------------------------
# tensor operations / products: np.einsum enables index notation, avoiding loops
# e.g. ddot42 performs $C_ij = A_ijkl B_lk$ for the entire grid
trans2 = lambda A2 : np.einsum('ijxyz ->jixyz ',A2 )
ddot22 = lambda A2,B2: np.einsum('ijxyz ,jixyz ->xyz ',A2,B2)
ddot42 = lambda A4,B2: np.einsum('ijklxyz,lkxyz ->ijxyz ',A4,B2)
ddot44 = lambda A4,B4: np.einsum('ijklxyz,lkmnxyz->ijmnxyz',A4,B4)
dot11 = lambda A1,B1: np.einsum('ixyz ,ixyz ->xyz ',A1,B1)
dot22 = lambda A2,B2: np.einsum('ijxyz ,jkxyz ->ikxyz ',A2,B2)
dot24 = lambda A2,B4: np.einsum('ijxyz ,jkmnxyz->ikmnxyz',A2,B4)
dot42 = lambda A4,B2: np.einsum('ijklxyz,lmxyz ->ijkmxyz',A4,B2)
dyad22 = lambda A2,B2: np.einsum('ijxyz ,klxyz ->ijklxyz',A2,B2)
dyad11 = lambda A1,B1: np.einsum('ixyz ,jxyz ->ijxyz ',A1,B1)
# eigenvalue decomposition of 2nd-order tensor: return in convention i,j,x,y,z
# NB requires to swap default order of NumPy (in in/output)
def eig2(A2):
swap1i = lambda A1: np.einsum('xyzi ->ixyz ',A1)
swap2 = lambda A2: np.einsum('ijxyz->xyzij',A2)
swap2i = lambda A2: np.einsum('xyzij->ijxyz',A2)
vals,vecs = np.linalg.eig(swap2(A2))
vals = swap1i(vals)
vecs = swap2i(vecs)
return vals,vecs
# logarithm of grid of 2nd-order tensors
def ln2(A2):
vals,vecs = eig2(A2)
return sum([np.log(vals[i])*dyad11(vecs[:,i],vecs[:,i]) for i in range(3)])
# exponent of grid of 2nd-order tensors
def exp2(A2):
vals,vecs = eig2(A2)
return sum([np.exp(vals[i])*dyad11(vecs[:,i],vecs[:,i]) for i in range(3)])
# determinant of grid of 2nd-order tensors
def det2(A2):
return (A2[0,0]*A2[1,1]*A2[2,2]+A2[0,1]*A2[1,2]*A2[2,0]+A2[0,2]*A2[1,0]*A2[2,1])-\
(A2[0,2]*A2[1,1]*A2[2,0]+A2[0,1]*A2[1,0]*A2[2,2]+A2[0,0]*A2[1,2]*A2[2,1])
# inverse of grid of 2nd-order tensors
def inv2(A2):
A2det = det2(A2)
A2inv = np.empty([3,3,Nx,Ny,Nz])
A2inv[0,0] = (A2[1,1]*A2[2,2]-A2[1,2]*A2[2,1])/A2det
A2inv[0,1] = (A2[0,2]*A2[2,1]-A2[0,1]*A2[2,2])/A2det
A2inv[0,2] = (A2[0,1]*A2[1,2]-A2[0,2]*A2[1,1])/A2det
A2inv[1,0] = (A2[1,2]*A2[2,0]-A2[1,0]*A2[2,2])/A2det
A2inv[1,1] = (A2[0,0]*A2[2,2]-A2[0,2]*A2[2,0])/A2det
A2inv[1,2] = (A2[0,2]*A2[1,0]-A2[0,0]*A2[1,2])/A2det
A2inv[2,0] = (A2[1,0]*A2[2,1]-A2[1,1]*A2[2,0])/A2det
A2inv[2,1] = (A2[0,1]*A2[2,0]-A2[0,0]*A2[2,1])/A2det
A2inv[2,2] = (A2[0,0]*A2[1,1]-A2[0,1]*A2[1,0])/A2det
return A2inv
# ------------------------ INITIATE (IDENTITY) TENSORS ------------------------
# identity tensor (single tensor)
i = np.eye(3)
# identity tensors (grid)
I = np.einsum('ij,xyz' , i ,np.ones([Nx,Ny,Nz]))
I4 = np.einsum('ijkl,xyz->ijklxyz',np.einsum('il,jk',i,i),np.ones([Nx,Ny,Nz]))
I4rt = np.einsum('ijkl,xyz->ijklxyz',np.einsum('ik,jl',i,i),np.ones([Nx,Ny,Nz]))
I4s = (I4+I4rt)/2.
II = dyad22(I,I)
# ------------------------------------ FFT ------------------------------------
# projection operator (only for non-zero frequency, associated with the mean)
# NB: vectorized version of "hyper-elasticity_even.py"
# - allocate / support function
Ghat4 = np.zeros([3,3,3,3,Nx,Ny,Nz]) # projection operator
x = np.zeros([3 ,Nx,Ny,Nz],dtype='int64') # position vectors
q = np.zeros([3 ,Nx,Ny,Nz],dtype='int64') # frequency vectors
delta = lambda i,j: np.float(i==j) # Dirac delta function
# - set "x" as position vector of all grid-points [grid of vector-components]
x[0],x[1],x[2] = np.mgrid[:Nx,:Ny,:Nz]
# - convert positions "x" to frequencies "q" [grid of vector-components]
for i in range(3):
freq = np.arange(-shape[i]/2,+shape[i]/2,dtype='int64')
q[i] = freq[x[i]]
# - compute "Q = ||q||",
# and "norm = 1/Q" being zero for Q==0 and Nyquist frequencies
q = q.astype(np.float)
Q = dot11(q,q)
Z = Q==0
Q[Z] = 1.
norm = 1./Q
norm[Z] = 0.
norm[0,:,:] = 0.
norm[:,0,:] = 0.
norm[:,:,0] = 0.
# - set projection operator [grid of tensors]
for i, j, l, m in itertools.product(range(3), repeat=4):
Ghat4[i,j,l,m] = norm*delta(i,m)*q[j]*q[l]
# (inverse) Fourier transform (for each tensor component in each direction)
fft = lambda x: np.fft.fftshift(np.fft.fftn (np.fft.ifftshift(x),[Nx,Ny,Nz]))
ifft = lambda x: np.fft.fftshift(np.fft.ifftn(np.fft.ifftshift(x),[Nx,Ny,Nz]))
# functions for the projection 'G', and the product 'G : K^LT : (delta F)^T'
G = lambda A2 : np.real( ifft( ddot42(Ghat4,fft(A2)) ) ).reshape(-1)
K_dF = lambda dFm: trans2(ddot42(K4,trans2(dFm.reshape(3,3,Nx,Ny,Nz))))
G_K_dF = lambda dFm: G(K_dF(dFm))
# --------------------------- CONSTITUTIVE RESPONSE ---------------------------
# constitutive response to a certain loading and history
# NB: completely uncoupled from the FFT-solver, but implemented as a regular
# grid of quadrature points, to have an efficient code;
# each point is completely independent, just evaluated at the same time
def constitutive(F,F_t,be_t,ep_t):
# function to compute linearization of the logarithmic Finger tensor
def dln2_d2(A2):
vals,vecs = eig2(A2)
K4 = np.zeros([3,3,3,3,Nx,Ny,Nz])
for m, n in itertools.product(range(3),repeat=2):
gc = (np.log(vals[n])-np.log(vals[m]))/(vals[n]-vals[m])
gc[vals[n]==vals[m]] = (1.0/vals[m])[vals[n]==vals[m]]
K4 += gc*dyad22(dyad11(vecs[:,m],vecs[:,n]),dyad11(vecs[:,m],vecs[:,n]))
return K4
# elastic stiffness tensor
C4e = K*II+2.*mu*(I4s-1./3.*II)
# trial state
Fdelta = dot22(F,inv2(F_t))
be_s = dot22(Fdelta,dot22(be_t,trans2(Fdelta)))
lnbe_s = ln2(be_s)
tau_s = ddot42(C4e,lnbe_s)/2.
taum_s = ddot22(tau_s,I)/3.
taud_s = tau_s-taum_s*I
taueq_s = np.sqrt(3./2.*ddot22(taud_s,taud_s))
N_s = 3./2.*taud_s/taueq_s
phi_s = taueq_s-(tauy0+H*ep_t)
phi_s = 1./2.*(phi_s+np.abs(phi_s))
# return map
dgamma = phi_s/(H+3.*mu)
ep = ep_t + dgamma
tau = tau_s -2.*dgamma*N_s*mu
lnbe = lnbe_s-2.*dgamma*N_s
be = exp2(lnbe)
P = dot22(tau,trans2(inv2(F)))
# consistent tangent operator
a0 = dgamma*mu/taueq_s
a1 = mu/(H+3.*mu)
C4ep = ((K-2./3.*mu)/2.+a0*mu)*II+(1.-3.*a0)*mu*I4s+2.*mu*(a0-a1)*dyad22(N_s,N_s)
dlnbe4_s = dln2_d2(be_s)
dbe4_s = 2.*dot42(I4s,be_s)
K4 = (C4e/2.)*(phi_s<=0.).astype(np.float)+C4ep*(phi_s>0.).astype(np.float)
K4 = ddot44(K4,ddot44(dlnbe4_s,dbe4_s))
K4 = dot42(-I4rt,tau)+K4
K4 = dot42(dot24(inv2(F),K4),trans2(inv2(F)))
return P,K4,be,ep
# phase indicator: square inclusion of volume fraction (3*3*14)/(10*12*14)
phase = np.zeros([Nx,Ny,Nz]); phase[:3,:3,:] = 1.
# function to convert material parameters to grid of scalars
param = lambda M0,M1: M0*np.ones([Nx,Ny,Nz])*(1.-phase)+\
M1*np.ones([Nx,Ny,Nz])* phase
# material parameters
K = param(0.833,0.833) # bulk modulus
mu = param(0.386,0.386) # shear modulus
H = param(0.004,0.008) # hardening modulus
tauy0 = param(0.003,0.006) # initial yield stress
# ---------------------------------- LOADING ----------------------------------
# stress, deformation gradient, plastic strain, elastic Finger tensor
# NB "_t" signifies that it concerns the value at the previous increment
ep_t = np.zeros([ Nx,Ny,Nz])
P = np.zeros([3,3,Nx,Ny,Nz])
F = np.array(I,copy=True)
F_t = np.array(I,copy=True)
be_t = np.array(I,copy=True)
# initialize macroscopic incremental loading
ninc = 50
lam = 0.0
barF = np.array(I,copy=True)
barF_t = np.array(I,copy=True)
# initial tangent operator: the elastic tangent
K4 = K*II+2.*mu*(I4s-1./3.*II)
# incremental deformation
for inc in range(1,ninc):
print('=============================')
print('inc: {0:d}'.format(inc))
# set macroscopic deformation gradient (pure-shear)
lam += 0.2/float(ninc)
barF = np.array(I,copy=True)
barF[0,0] = (1.+lam)
barF[1,1] = 1./(1.+lam)
# store normalization
Fn = np.linalg.norm(F)
# first iteration residual: distribute "barF" over grid using "K4"
b = -G_K_dF(barF-barF_t)
F += barF-barF_t
# parameters for Newton iterations: normalization and iteration counter
Fn = np.linalg.norm(F)
iiter = 0
# iterate as long as the iterative update does not vanish
while True:
# solve linear system using the Conjugate Gradient iterative solver
dFm,_ = sp.cg(tol=1.e-8,
A = sp.LinearOperator(shape=(F.size,F.size),matvec=G_K_dF,dtype='float'),
b = b,
)
# add solution of linear system to DOFs
F += dFm.reshape(3,3,Nx,Ny,Nz)
# compute residual stress and tangent, convert to residual
P,K4,be,ep = constitutive(F,F_t,be_t,ep_t)
b = -G(P)
# check for convergence, print convergence info to screen
print('{0:10.2e}'.format(np.linalg.norm(dFm)/Fn))
if np.linalg.norm(dFm)/Fn<1.e-5 and iiter>0: break
# update Newton iteration counter
iiter += 1
# end-of-increment: update history
barF_t = np.array(barF,copy=True)
F_t = np.array(F ,copy=True)
be_t = np.array(be ,copy=True)
ep_t = np.array(ep ,copy=True)